Newer
Older
################################################################
# lg.py - Label Graph Class
# Authors: R. Zanibbi and H. Mouchere, 2012
# Copyright (c) 2012-2014 Richard Zanibbi and Harold Mouchere
################################################################
import csv
import sys
import math
import copy
import os
from collections import OrderedDict
from smallGraph import SmallGraph
from compareTools import cmpNodes, cmpEdges
"""Class for bipartite graphs where the two node sets are identical, and
multiple node and edge labels are permited. The graph and individual nodes
and edges have associated values (e.g. weights/probabilities)."""
# Define graph data elements ('data members' for an object in the class)
__slots__ = ('file','gweight','nlabels','elabels','error','absentNodes',\
'absentEdges','hiddenEdges', 'cmpNodes', 'cmpEdges')
##################################
# Constructors (in __init__)
##################################
def __init__(self,*args):
"""Graph data is read from a CSV file or provided node and edge label
dictionaries. If invalid entries are found, the error flag is set to
true, and graph input continues. In .lg files, blank lines are
ignored, and # may be used for comment lines in CSV graph files."""
self.error = False
self.gweight = 1.0
# self.nlabels = {}
# self.elabels = {}
self.nlabels = OrderedDict()
self.elabels = OrderedDict()
self.absentNodes = set([])
self.absentEdges = set([])
self.hiddenEdges = {}
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
fileName = None
nodeLabels = {}
edgeLabels = {}
validAsteriskEdges = set()
invalidAsteriskNodes = set()
if len(args) == 1:
fileName = args[0]
self.file = fileName # DEBUG: add filename for debugging purposes.
elif len(args) == 2:
nodeLabels = args[0]
edgeLabels = args[1]
if fileName == None:
# CONSTRUCTOR 1: try to read in node and edge labels.
self.file = None
# Automatically convert identifiers and labels to strings if needed.
for nid in list(nodeLabels):
if not isinstance(nid, str):
nid = str(nid)
newdict = {}
for label in list(nodeLabels[nid]):
if not isinstance(nid, str):
label = str(label)
# Weights need to be floats.
if not isinstance( nodeLabels[nid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for node ' + nid + ', label \"' \
+ label +"\": " + str(nodeLabels[nid][label]) + "\n")
newdict[ label ] = nodeLabels[nid][label]
self.nlabels[nid] = newdict
# WARNING: self-edges are not detected if edge labels used
# for initialization.
for eid in list(edgeLabels):
if not isinstance(eid[0], str) or not isinstance(eid[1],str):
eid[0] = str(eid[0])
eid[1] = str(eid[1])
newdict = {}
for label in list(edgeLabels[eid]):
if not isinstance(label, str):
label = str(label)
if not isinstance( edgeLabels[eid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for edge ' + str(eid) + ', label \"' \
+ label +"\": " + str(edgeLabels[eid][label]) + "\n")
newdict[ label ] = edgeLabels[eid][label]
self.elabels[eid] = newdict
else:
# CONSTRUCTOR 2: Read graph data from CSV file.
MIN_NODE_ENTRY_LENGTH = 3
MIN_EDGE_ENTRY_LENGTH = 4
MIN_OBJECT_ENTRY_LENGTH = 5
MIN_OBJECT_EDGE_ENTRY_LENGTH = 5
try:
fileReader = csv.reader(open(fileName))
except:
# Create an empty graph if a file cannot be found.
# Set the error flag.
sys.stderr.write(' !! IO Error (cannot open): ' + fileName + '\n')
self.error = True
return
objectDict = dict([])
for row in fileReader:
# Skip blank lines.
if len(row) == 0 or len(row) == 1 and row[0].strip() == '':
continue
entryType = row[0].strip()
if entryType == 'N':
if len(row) < MIN_NODE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid node entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
nid = row[1].strip() # remove leading/trailing whitespace
if nid in list(self.nlabels):
nlabelDict = self.nlabels[ nid ]
nlabel = row[2].strip()
# if nlabel in nlabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated node label entry ('\
# + self.file + '): ' \
# + '\n\t' + str(row) + '\n')
# self.error = True
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[3])
else:
# New primitive; create new dictionary for
# provided label (row[2]) and value (row[3])
nid = row[1].strip()
nlabel = row[2].strip()
# Feb. 2013 - allow no weight to be provided.
if len(row) > MIN_NODE_ENTRY_LENGTH:
self.nlabels[ nid ] = { nlabel : float(row[3]) }
else:
self.nlabels[ nid ] = { nlabel : 1.0 }
elif entryType == 'E':
if len(row) < MIN_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid edge entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
primPair = ( row[1].strip(), row[2].strip() )
#self to self edge = error
if primPair[0] == primPair[1]:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
nid = primPair[0]
if nid in list(self.nlabels):
nlabelDict = self.nlabels[ nid ]
nlabel = row[3].strip()
# if nlabel in nlabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated node label entry ('\
# + self.file + '): ' \
# + '\n\t' + str(row) + '\n')
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[4])
#an edge already existing, add a new label
elif primPair in list(self.elabels):
elabelDict = self.elabels[ primPair ]
elabel = row[3].strip()
# if elabel in elabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated edge label entry (' \
# + self.file + '):\n\t' + str(row) + '\n')
# self.error = True
if elabel == '*':
# if using old fashion segmentation label, convert it by finding the (only) node label
if primPair[0] in self.nlabels and primPair[1] in self.nlabels and \
self.nlabels[ primPair[0]] == self.nlabels[ primPair[1]]:
elabel = list(self.nlabels[ primPair[0]])[0]
validAsteriskEdges.add( primPair )
else:
sys.stderr.write(' !! * edge used with ambiguous node labels (' \
+ str(self.nlabels[ primPair[0]]) + ' vs. ' \
+ str(self.nlabels[ primtPair[1]]) + ') in ' \
+ self.file + '):\n\t' + ", ".join(row) + '\n')
# RZ: Oct. 14 - cheap and dirty correction.
elabel = 'MergeError'
self.nlabels[ primPair[0] ] = { elabel : 1.0 }
self.nlabels[ primPair[1] ] = { elabel : 1.0 }
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
self.error = True
invalidAsteriskNodes.add( primPair[0] )
invalidAsteriskNodes.add( primPair[1] )
# Add (or replace) entry for the label.
# Feb. 2013 - allow no weight.
if len(row) > MIN_EDGE_ENTRY_LENGTH:
elabelDict[ elabel ] = float(row[4])
else:
elabelDict[ elabel ] = 1.0
else:
# Add new edge label entry for the new edge label
# as a dictionary.
primPair = ( row[1].strip(), row[2].strip() )
elabel = row[3].strip()
if elabel == '*':
# if using old fashion segmentation label, convert it by finding the (only) node label
if primPair[0] in self.nlabels and primPair[1] in self.nlabels and \
self.nlabels[ primPair[0]] == self.nlabels[ primPair[1]]:
elabel = list(self.nlabels[ primPair[0]])[0]
validAsteriskEdges.add( primPair )
else:
sys.stderr.write(' !! * edge used with ambiguous node labels (' \
+ str(self.nlabels[ primPair[0]]) + ' vs. ' \
+ str(self.nlabels[ primPair[1]]) + ') in ' \
+ self.file + '):\n\t' + ", ".join(row) + '\n')
elabel = 'MergeError'
self.nlabels[ primPair[0] ] = { elabel : 1.0 }
self.nlabels[ primPair[1] ] = { elabel : 1.0 }
self.error = True
invalidAsteriskNodes.add( primPair[0] )
invalidAsteriskNodes.add( primPair[1] )
self.elabels[ primPair ] = { elabel : float(row[4]) }
elif entryType == 'O':
if len(row) < MIN_OBJECT_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: '+str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
rawnodeList = row[4:] # get all other item as node id
oid = row[1].strip()
nlabel = row[2].strip()
nValue = float(row[3].strip())
nodeList = []
# add all nodes
for n in rawnodeList:
nid = n.strip()
nodeList.append(nid)
if nid in list(self.nlabels):
nlabelDict = self.nlabels[ nid ]
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = nValue
else:
# New primitive; create new dictionary for
# provided label and value
# Feb. 2013 - allow no weight to be provided.
self.nlabels[ nid ] = { nlabel : nValue }
#save the nodes of this object
objectDict[oid] = nodeList
#add all edges
for nid1 in nodeList:
#nid1 = n1.strip()
for nid2 in nodeList:
#nid2 = n2.strip()
if nid1 != nid2:
primPair = ( nid1, nid2 )
elabel = nlabel
if primPair in list(self.elabels):
elabelDict = self.elabels[ primPair ]
# Add (or replace) entry for the label.
elabelDict[ elabel ] = nValue
else:
# Add new edge label entry for the new edge label
# as a dictionary.
self.elabels[ primPair ] = { elabel : nValue }
elif entryType == 'R' or entryType == 'EO':
if len(row) < MIN_OBJECT_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
oid1 = row[1].strip()
oid2 = row[2].strip()
elabel = row[3].strip()
eValue = float(row[4].strip())
validRelationship = True
if not oid1 in objectDict:
sys.stderr.write(' !! Invalid object id: "' + oid1+\
'" - IGNORING relationship:\n\t' + str(row) + '\n')
self.error = True
validRelationship = False
if not oid2 in objectDict:
sys.stderr.write(' !! Invalid object id: "' + oid2+\
'" - IGNORING relationship:\n\t' + str(row) + '\n')
self.error = True
validRelationship = False
if validRelationship:
nodeList1 = objectDict[oid1] # get all other item as node id
nodeList2 = objectDict[oid2] # get all other item as node id
for nid1 in nodeList1:
for nid2 in nodeList2:
if nid1 != nid2:
primPair = ( nid1, nid2 )
if primPair in list(self.elabels):
elabelDict = self.elabels[ primPair ]
# Add (or replace) entry for the label.
elabelDict[ elabel ] = eValue
else:
# Add new edge label entry for the new edge label
# as dictionary.
self.elabels[ primPair ] = { elabel : eValue }
else:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
# DEBUG: complaints about empty lines here...
elif len(entryType.strip()) > 0 and entryType.strip()[0] == '#':
# Ignore lines with comments.
pass
else:
sys.stderr.write(' !! Invalid graph entry type (expected N, E, O, R or EO): ' \
+ str(row) + '\n')
self.error = True
# Add any implicit nodes in edges explicitly to the hash table
# containing nodes. The 'nolabel' label is '_'.
anonNode = False
anodeList = []
for elabel in list(self.elabels):
nid1 = elabel[0]
nid2 = elabel[1]
if not nid1 in list(self.nlabels):
self.nlabels[ nid1 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid1 ]
anonNode = True
if not nid2 in list(self.nlabels):
self.nlabels[ nid2 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid2 ]
anonNode = True
if anonNode:
sys.stderr.write(' ** Anonymous labels created for:\n\t' \
+ str(anodeList) + '\n')
# RZ Oct. 2014: add invalid merge edges and node labels where missing.
# This catches when a valid * edge is connected to an invalid one,
# relabeling the edge.
invalidAsteriskNodeList = sorted( list(invalidAsteriskNodes) )
while len(invalidAsteriskNodeList) > 0:
# Remove last element from the list.
nextPrimId = invalidAsteriskNodeList.pop()
# Linear traversal for matches (a 'region growing' algorithm)
# Add a traversal each time a new connected edge is found.
# NOTE: this will not add edges missing in the input (e.g.
# if '*' is defined in one direction but not the other.
for (parent, child) in validAsteriskEdges:
otherId = None
if parent == nextPrimId:
otherId = child
if child == nextPrimId:
otherId = parent
if otherId != None:
if not otherId in invalidAsteriskNodes:
invalidAsteriskNodes.add( otherId )
invalidAsteriskNodeList.append( otherId )
self.nlabels[ otherId ] = { 'MergeError' : 1.0 }
self.elabels[ (parent, child) ] = { 'MergeError' : 1.0 }
##################################
# String, CSV output
##################################
def __str__(self):
nlabelcount = 0
elabelcount = 0
for nid in list(self.nlabels):
nlabelcount = nlabelcount + len(list(self.nlabels[nid]))
for eid in list(self.elabels):
elabelcount = elabelcount + len(list(self.elabels[eid]))
return 'Nodes: ' + str(len(list(self.nlabels))) \
+ ' (labels: ' + str(nlabelcount) \
+ ') Edges: ' + str(len(list(self.elabels))) \
+ ' (labels: ' + str(elabelcount) \
+ ') Error: ' + str(self.error)
def csvObject(self):
"""Construct CSV data file using object-relationship format. Currently
weight values are only placeholders (i.e. 1.0 is always used)."""
outputString = ""
(segmentPrimitiveMap, primitiveSegmentMap, rootSegments, \
segmentEdges) = self.segmentGraph()
# Write the file name.
outputString += "# " + os.path.split(self.file)[1]
outputString += "\n\n"
# Write number of objects and format information.
# Output object information.
outputString += "# " + str(len(list(segmentPrimitiveMap))) + " Objects"
outputString += "\n"
outputString += "# FORMAT: O, Object ID, Label, Weight, [ Primitive ID List ]"
outputString += "\n"
for objectId in sorted( list(segmentPrimitiveMap) ):
for label in sorted(segmentPrimitiveMap[objectId][1]):
outputString += "O, " + objectId + ", " + label + ", 1.0"
for primitiveId in sorted( segmentPrimitiveMap[ objectId ][ 0 ] ):
outputString += ", " + primitiveId
outputString += "\n"
# Write number of relationships and format information.
# Write relationship information.
outputString += "\n"
outputString += "# " + str( len(list(segmentEdges)) ) + " Relationships (Pairs of Objects)"
outputString += "\n"
outputString += "# FORMAT: R, Object ID (parent), Object ID (child), Label, Weight"
outputString += "\n"
for (parentObj, childObj) in sorted( list(segmentEdges) ):
for relationship in sorted( list(segmentEdges[ (parentObj, childObj) ]) ):
outputString += "R, " + parentObj + ", " + childObj + ", "
outputString += relationship + ", 1.0"
outputString += "\n"
return outputString
def csv(self, sort=True):
"""Construct CSV data file representation as a string."""
# NOTE: currently the graph value is not being stored...
sstring = ''
nlist = []
elist = []
for nkey in list(self.nlabels):
nodeLabels = self.nlabels[nkey]
for nlabel in list(nodeLabels):
nstring = 'N,' + nkey + ',' + nlabel + ',' + \
str(nodeLabels[nlabel]) + '\n'
nlist = nlist + [ nstring ]
for npair in list(self.elabels):
edgeLabels = self.elabels[npair]
for elabel in list(edgeLabels):
estring = 'E,' + npair[0] + ',' + npair[1] + ',' + elabel + ',' + \
str(edgeLabels[ elabel ]) + '\n'
elist = elist + [ estring ]
if sort:
# Sort the node and edge strings lexicographically.
# NOTE: this means that '10' precedes '2' in the sorted ordering
nlist.sort()
elist.sort()
sstring += '# ' + os.path.split(self.file)[1] + '\n\n'
sstring += '# ' + str(len(nlist)) + ' Nodes\n'
sstring += "# FORMAT: N, Primitive ID, Label, Weight\n"
for nstring in nlist:
sstring = sstring + nstring
sstring += "\n"
sstring += '# ' + str(len(elist)) + ' Edges\n'
sstring += '# FORMAT: E, Primitive ID (parent), Primitive ID (child), Label, Weight\n'
for estring in elist:
sstring = sstring + estring
return sstring
##################################
# Construct segment-based graph
# for current graph state
##################################
def segmentGraph(self):
"""Return dictionaries from segments to strokes, strokes to segments,
segments without parents, and edges labeled as segment (w. symbol label)."""
primitiveSegmentMap = {}
segmentPrimitiveMap = {}
#noparentSegments = []
segmentEdges = {} # Edges between detected objects (segments)
self.hideUnlabeledEdges()
# Note: a segmentation edge in either direction merges a primitive pair.
primSets = {}
for node,labs in self.nlabels.items():
primSets[node] = {}
for l in labs:
(cost,_)=self.cmpNodes([l],[])
if(cost > 0):
primSets[node][l] = set([node])
#if len(primSets[node]) == 0:
# primSets[node]['_'] = set([node]) #at least one empty label
for (n1, n2) in list(self.elabels):
commonLabels = set(list(self.nlabels[n1])).intersection(list(self.nlabels[n2]),list(self.elabels[(n1,n2)]))
for l in commonLabels:
#check if this label is interesting or not => compare to 'nothing', if there is not error, it means it is not interesting
(cost,_)=self.cmpNodes([l],[])
if(cost > 0):
primSets[n1][l].add(n2)
primSets[n2][l].add(n1)
# NOTE: Segments can have multiple labels
# A primitive can belong to several different
# segments with different sets of primitives with different labels.
# but there is only one segment with the same label attached to each primitive.
i = 0
segmentList = []
rootSegments = set([])
# For each label associated with each primitive, there is a possible object/segment
for primitive,segments in primSets.items():
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
for lab in list(segments):
alreadySegmented = False
for j in range(len(segmentList)):
if segments[lab] == segmentList[j]["prim"]:
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
primitiveSegmentMap[ primitive ][lab] = 'Obj' + str(j)
alreadySegmented = True
if lab not in segmentList[j]["label"]:
segmentPrimitiveMap[ 'Obj' + str(j) ][1].append(lab)
segmentList[j]["label"].add(lab)
break
if not alreadySegmented:
# Add the new segment.
newSegment = 'Obj' + str(i)
segmentList = segmentList + [ {"label":{lab},"prim":primSets[primitive][lab]} ]
segmentPrimitiveMap[ newSegment ] = (segments[lab],[lab])
primitiveSegmentMap[ primitive ][lab] = newSegment
rootSegments.add(newSegment)
i += 1
# Identify 'root' objects/segments (i.e. with no incoming edges),
# and edges between objects. **We skip segmentation edges.
for (n1, n2), elabs in self.elabels.items():
segment1 = primitiveSegmentMap[n1]
segment2 = primitiveSegmentMap[n2]
#for all possible pair of segments with these two primitives, look for the effective relation labels
possibleRelationLabels = set(list(elabs)).difference(list(self.nlabels[n1]),list(self.nlabels[n2]))
if len(possibleRelationLabels) != 0:
#for all pair of labels
for l1,pset1 in segment1.items():
for l2, pset2 in segment2.items():
#if not in the same seg
if pset1 != pset2:
#look for the label which is common for all primitive pair in the two segments
theRelationLab = possibleRelationLabels
for p1 in primSets[n1][l1]:
for p2 in primSets[n2][l2]:
if(p1,p2) in self.elabels:
theRelationLab &= set(list(self.elabels[(p1,p2)]))
else:
theRelationLab = set([]) # it should be a clique !
if len(theRelationLab) == 0:
break
if len(theRelationLab) == 0:
break
# there is a common relation if theRelationLab is not empty
if len(theRelationLab) != 0:
#we can remove seg2 from the roots
if pset2 in rootSegments:
rootSegments.remove(pset2)
#print (str((n1, n2))+ " => " + str(( pset1, pset2)) + " = " + str(theRelationLab))
for label in theRelationLab:
#check if this label is interesting or not => compare to 'nothing', if there is not error, it means it is not interesting
(cost,_)=self.cmpNodes([label],[])
if(cost > 0):
if ( pset1, pset2) in segmentEdges:
if label in segmentEdges[ ( pset1, pset2) ]:
# Sum weights for repeated labels
segmentEdges[ ( pset1, pset2)][label] += \
self.elabels[(n1,n2)][label]
else:
# Add unaltered weights for new edge labels
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
else:
segmentEdges[ ( pset1, pset2) ] = {}
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
self.restoreUnlabeledEdges()
return (segmentPrimitiveMap, primitiveSegmentMap, list(rootSegments), \
segmentEdges)
##################################
# Metrics and Graph Differences
##################################
def compareSegments(self, lg2):
"""Compute the number of differing segments, and record disagreements.
The primitives in each graph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all incoming and outgoing edges."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(sp2, ps2, _, sre2) = lg2.segmentGraph()
allNodes = set(list(ps1))
assert allNodes == set(list(ps2))
edgeDiffCount = 0
edgeDiffClassCount = 0
segDiffs = {}
correctSegments = set([])
correctSegmentsAndClass = set([])
undirDiffClassSet = set([])
# List and count errors due to segmentation.
# Use cmpNodes to compare the labels of symbols.
# Idea : build the sub graph with the current primitive as center and only
for primitive in list(ps1):
edgeFromP1 = {}
edgeFromP2 = {}
for (lab1,seg1) in ps1[primitive].items():
for p in sp1[seg1][0]:
# DEBUG (RZ): this is producing a primitive edge-level count:
# do not count segment edges that are undefined (e.g. in one direction,
# but not the other)
if p != primitive and (p,primitive) in list(self.elabels) and \
lab1 in list(self.elabels[ (p,primitive) ]):
if p in edgeFromP1:
edgeFromP1[p].append(lab1)
else:
edgeFromP1[p] = [lab1]
for (lab2,seg2) in ps2[primitive].items():
for p in sp2[seg2][0]:
# DEBUG (RZ) - see DEBUG comment above.
if p != primitive and (p,primitive) in list(lg2.elabels) and \
lab2 in list(lg2.elabels[ (p, primitive) ]):
if p in edgeFromP2:
edgeFromP2[p].append(lab2)
else:
edgeFromP2[p] = [lab2]
# Compute differences in edge labels with cmpNodes (as they are symbol labels)
diff1 = set([])
diff2 = set([])
# first add differences for shared primitives
commonPrim = set(list(edgeFromP1)).intersection(list(edgeFromP2))
for p in commonPrim:
(cost,diff) = self.cmpNodes(edgeFromP1[p], edgeFromP2[p])
edgeDiffCount = edgeDiffCount + cost
# RZ June 2015: Record edges that are specifically valid merges with disagreeing labels.
# Also record sets of undirected edges that disagree.
for (l1,l2) in diff:
if l1 in list(self.nlabels[p]) and l2 in list(lg2.nlabels[p]):
edgeDiffClassCount += 1
# RZ: we do not have a *segmentation* difference if corresponding segm.
# edges have a label.
elif cost > 0:
diff1.add(p)
diff2.add(p)
if not (p, primitive) in undirDiffClassSet and not (primitive, p) in undirDiffClassSet:
undirDiffClassSet.add( (primitive, p) )
#then add differences for primitives which are not in the other set
for p in (set(list(edgeFromP1)) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP1[p], [])
edgeDiffCount = edgeDiffCount + cost
diff1.add(p)
for p in (set(list(edgeFromP2)) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP2[p], [])
edgeDiffCount = edgeDiffCount + cost
diff2.add(p)
# Only create an entry where there are disagreements.
if len(diff1) + len(diff2) > 0:
segDiffs[primitive] = ( diff1, diff2 )
# RZ: Oct. 2014 - replacing method used to evaluate segmentation. Also
# add checks for segments in the target being disjoint.
#
# Objects are defined by a set of primitives, plus a label.
# NOTE: This currently will support mutliple labels, but will lead to invalid
# "Class/Det" values in 00_Summary.txt if there are multiple labels.
targets = {}
# RZ: Add mapping from primitive list to object ids for direct lookup.
targetObjIds = {}
matchedTargets = set()
for ObjID in list(sp2):
# Skip absent nodes - they are not valid targets.
if 'ABSENT' not in sp2[ ObjID ][ 1 ]:
# Convert primitive set to a sorted tuple list.
primitiveTupleList = tuple( sorted( list( sp2[ ObjID ][ 0 ] ) ) )
# Store target label in targets dict, matches in matchedTargets dict (false init.)
targets[ primitiveTupleList ] = sp2[ ObjID][1]
targetObjIds[ primitiveTupleList ] = ObjID
# Look for matches.
# Do *not* allow a primitive set to be matched more than once.
for ObjID in list(sp1):
# HACK (RZ): DEBUG - was not checking whether matched objects were
# missing before absent nodes were added.
if 'ABSENT' in sp1[ ObjID ][ 1 ]:
continue
primitiveTupleList = tuple( sorted( list(sp1[ObjID][ 0 ] )))
if primitiveTupleList in list(targets) \
and not primitiveTupleList in matchedTargets:
matchedTargets.add( primitiveTupleList )
correctSegments.add( ObjID )
# Obtain matching labels. Create list of correct (segmentId, label) pairs
# for *all* matching labels.
# DEBUG: empty lists were being matched! Added test for empty matches.
# WARNING: Only guaranteed to work for single labels.
outputLabels = set(sp1[ ObjID ][ 1 ])
matchingLabels = list( outputLabels.intersection( targets[ primitiveTupleList ] ) )
if len(matchingLabels) > 0:
ObjIDRepeats = [ObjID] * len(matchingLabels)
correctSegmentsAndClass.add( tuple( zip(ObjIDRepeats, list(matchingLabels))))
# Compute total number of object classifications (recognition targets)
nbSegmClass = 0
for (_,labs) in sp2.items():
nbSegmClass += len(labs[1])
# Compute the specific 'object-level' graph edges that disagree, at the
# level of primitive-pairs.
segRelErrors = 0
correctSegRels = 0
correctSegRelLocations = 0
primRelEdgeDiffs = {}
# Iterate over object relationships in the output graph.
for thisPair in list(sre1):
misLabeled = False
falsePositive = False
thisParentIds = set(sp1[ thisPair[0] ][0])
thisChildIds = set(sp1[thisPair[1] ][0])
# RZ (June 2015): Obtain names for correct segments in target graph (lg2)
primitiveTupleListParent = tuple( sorted( list( thisParentIds )))
primitiveTupleListChild = tuple( sorted( list ( thisChildIds )))
targetObjNameParent = None
targetObjNameChild = None
if primitiveTupleListParent in list(targetObjIds):
targetObjNameParent = targetObjIds[ primitiveTupleListParent ]
if primitiveTupleListChild in list(targetObjIds):
targetObjNameChild = targetObjIds[ primitiveTupleListChild ]
# Check whether the objects are correctly segmented by their object identifiers
if not ( thisPair[0] in correctSegments and thisPair[1] in correctSegments):
# Avoid counting mis-segmented objects as having valid relationships
falsePositive = True
elif not ( targetObjNameParent, targetObjNameChild ) in list(sre2):
# Check that there is an edge between these objects in the target graph.
falsePositive = True
else:
# RZ (June, 2015): Compare labels directly on relation edges.
# WARNING: This checks that *all* labels are identical. Fine for single labels.
if not sorted( list(sre1[ thisPair ]) ) == \
sorted( list(sre2[ ( targetObjNameParent, targetObjNameChild )]) ):
misLabeled = True
# NOTE: assumes single labels on primitives.
# primRelEdgeDiffs records which object pairs have incorrect labels.
if falsePositive or misLabeled:
self.error = True
segRelErrors += 1
primRelEdgeDiffs[ thisPair ] = [ ('Error',1.0) ]
else:
correctSegRels += 1
# Count correct relationship structures/locations.
if not falsePositive:
correctSegRelLocations += 1
# Compute object counts *without* inserted absent nodes.
lg2.removeAbsent()
self.removeAbsent()
(sp2orig, ps2orig, _, sre2orig) = lg2.segmentGraph()
(sp1orig, ps1orig, _, sre1orig) = self.segmentGraph()
nLg2Objs = len(list(sp2orig))
nLg1Objs = len(list(sp1orig))
# For input file, need to compare against all objects after including
# missing/additional absent nodes and edges.
nLg1ObjsWithAbsent = len(list(sp1))
lg2.addAbsent(self)
self.addAbsent(lg2)
# RZ (Oct. 2014) Adding indicator variables for different correctness scenarios.
hasCorrectSegments = 1 if len(correctSegments) == nLg2Objs and \
len(correctSegments) == nLg1ObjsWithAbsent else 0
hasCorrectSegmentsAndLabels = 1 if len(correctSegmentsAndClass) == nLg2Objs and \
len(correctSegmentsAndClass) == nLg1ObjsWithAbsent else 0
hasCorrectRelationLocations = 1 if correctSegRelLocations == len(list(sre1)) and \
correctSegRelLocations == len(list(sre2)) else 0
hasCorrectRelationsAndLabels = 1 if correctSegRels == len(list(sre1)) and \
correctSegRels == len(list(sre2)) else 0
hasCorrectStructure = hasCorrectRelationLocations and hasCorrectSegments
# Compile vector of (name, value) metric pairs.
metrics = [
("edgeDiffClassCount", edgeDiffClassCount),
("undirDiffClassCount", len(undirDiffClassSet)),
("nSeg", nLg2Objs),
("detectedSeg", nLg1Objs),
("dSegRelEdges", len(list(sre1))),
("CorrectSegments", len(correctSegments)),
("CorrectSegmentsAndClass", len(correctSegmentsAndClass)),
("ClassError", nbSegmClass - len(correctSegmentsAndClass)),
("CorrectSegRels",correctSegRels),
("CorrectSegRelLocations",correctSegRelLocations),
("SegRelErrors", segRelErrors),
("hasCorrectSegments", hasCorrectSegments),
("hasCorrectSegLab", hasCorrectSegmentsAndLabels),
("hasCorrectRelationLocations", hasCorrectRelationLocations),
("hasCorrectRelLab", hasCorrectRelationsAndLabels),
("hasCorrectStructure", hasCorrectStructure) ]
# RZ: June 2015 - need to subtract misclassified edges from non-matching edges
# to obtain correct "Delta S" (D_S) Hamming distance for mismatched
# segmentation edges.
segEdgeMismatch = edgeDiffCount - edgeDiffClassCount
return (segEdgeMismatch, segDiffs, correctSegments, metrics, primRelEdgeDiffs)
def compare(self, lg2):
"""Returns: 1. a list of (metric,value) pairs,
2. a list of (n1,n2) node disagreements, 3. (e1,e2) pairs
for edge disagreements, 4. dictionary from primitives to
disagreeing segment graph edges for (self, lg2). Node and
edge labels are compared using label sets without values, and
*not* labels sorted by value."""
metrics = []
nodeconflicts = []
edgeconflicts = []
# HM: use the union of all node labels instead of only lg2 ones
# it changes the nlabelMismatch, nodeClassError and so D_C and all rates values
allNodes = set(list(lg2.nlabels)).union(list(self.nlabels))
numNodes = len(allNodes)
(sp2, ps2, _, sre2) = lg2.segmentGraph()
nSegRelEdges = len(sre2)
# Handle case of empty graphs, and missing primitives.
# SIDE EFFECT: 'ABSENT' nodes added to each graph.
self.matchAbsent(lg2)
# METRICS
# Node and edge labels are considered as sets.
nlabelMismatch = 0
numEdges = numNodes * (numNodes - 1) # No self-edges.
numLabels = numNodes + numEdges
elabelMismatch = 0
# Mismatched nodes.
nodeClassError = set()
for nid in allNodes: #list(self.nlabels):
(cost,errL) = self.cmpNodes(list(self.nlabels[nid]),list(lg2.nlabels[nid]))
#if there is some error
if cost > 0:
# add mismatch
nlabelMismatch = nlabelMismatch + cost
# add errors in error list
for (l1,l2) in errL:
nodeconflicts = nodeconflicts + [ (nid, [ (l1, 1.0) ], [(l2, 1.0)] ) ]
# add node in error list
nodeClassError = nodeClassError.union([nid])
# Two-sided comparison of *label sets* (look from absent edges in both
# graphs!) Must check whether edge exists; '_' represents a "NONE"
# label (no edge).
# Identify the set of nodes with disagreeing edges.
nodeEdgeError = set()
for (graph,oGraph) in [ (self,lg2), (lg2,self) ]:
for npair in list(graph.elabels):
if not npair in oGraph.elabels \
and (not graph.elabels[ npair ] == ['_']):
(cost,errL) = self.cmpEdges(list(graph.elabels[ npair ]),['_'])
elabelMismatch = elabelMismatch + cost
(a,b) = npair
# Record nodes in invalid edge
nodeEdgeError.update([a,b])
# DEBUG: Need to indicate correctly *which* graph has the
# missing edge; this graph (1st) or the other (listed 2nd).
if graph == self:
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
else:
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l2, 1.0) ], [(l1, 1.0)] ) )
# Obtain number of primitives with an error of any sort.
nodeError = nodeClassError.union(nodeEdgeError)
# One-sided comparison for common edges. Compared by cmpEdges
for npair in list(self.elabels):
if npair in list(lg2.elabels):
(cost,errL) = self.cmpEdges(list(self.elabels[npair]),list(lg2.elabels[npair]))
if cost > 0:
elabelMismatch = elabelMismatch + cost
(a,b) = npair
# Record nodes in invalid edge
nodeEdgeError.update([a,b])
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
# Now compute segmentation differences.
(segEdgeMismatch, segDiffs, correctSegs, segmentMetrics, segRelDiffs) \
= self.compareSegments(lg2)
# UNDIRECTED/NODE PAIR METRICS
# Compute number of invalid nodePairs
badPairs = {}
for ((n1, n2), _, _) in edgeconflicts:
if not (n2, n1) in badPairs:
badPairs[(n1, n2)] = True
incorrectPairs = len(badPairs)
# Compute number of mis-segmented node pairs.
badSegPairs = set([])
for node in list(segDiffs):
for other in segDiffs[node][0]:
if node != other and (other, node) not in badSegPairs:
badSegPairs.add((node, other))
for other in segDiffs[node][1]:
if node != other and (other, node)not in badSegPairs:
badSegPairs.add((node, other))
segPairErrors = len(badSegPairs)
# Compute performance metrics; avoid divisions by 0.
cerror = ("D_C", nlabelMismatch)
lerror = ("D_L", elabelMismatch)
serror = ("D_S", segEdgeMismatch)
rerror = ("D_R", elabelMismatch - segEdgeMismatch)
aerror = ("D_B", nlabelMismatch + elabelMismatch)
# DEBUG:
# Delta E BASE CASE: for a single node, which is absent in the other
# file, set label and segment edge mismatches to 1 (in order
# to obtain 1.0 as the error metric, i.e. total error).
if len(list(self.nlabels)) == 1 and \
(len(self.absentNodes) > 0 or \
len(lg2.absentNodes) > 0):
elabelMismatch = 1
segEdgeMismatch = 1
errorVal = 0.0
if numEdges > 0:
errorVal += math.sqrt(float(segEdgeMismatch) / numEdges) + \
math.sqrt(float(elabelMismatch) / numEdges)
if numNodes > 0:
errorVal += float(nlabelMismatch) / numNodes
errorVal = errorVal / 3.0
eerror = ("D_E(%)", errorVal)
# Compile metrics
metrics = metrics + [ aerror, cerror, lerror, rerror, serror, \
eerror, \
("nNodes",numNodes), ("nEdges", numEdges), \
("nSegRelEdges", nSegRelEdges), \
("dPairs",incorrectPairs),("segPairErrors",segPairErrors),
("nodeCorrect", numNodes - len(nodeError)) ]
metrics = metrics + segmentMetrics
return (metrics, nodeconflicts, edgeconflicts, segDiffs, correctSegs,\
segRelDiffs)
##################################
# Manipulation/'Mutation'
##################################
def separateTreeEdges(self):
"""Return a list of root nodes, and two lists of edges corresponding to
tree/forest edges, and the remaining edges."""
# First, obtain segments; perform extraction on edges over segments.
(segmentPrimitiveMap, primitiveSegmentMap, noparentSegments, \
segmentEdges) = self.segmentGraph()
# Collect parents and children for each node; identify root nodes.
# (NOTE: root nodes provided already as noparentSegments)
nodeParentMap = {}
nodeChildMap = {}
rootNodes = set(list(segmentPrimitiveMap))
for (parent, child) in segmentEdges:
if not child in list(nodeParentMap):
nodeParentMap[ child ] = [ parent ]
rootNodes.remove( child )
else:
nodeParentMap[ child ] += [ parent ]
if not parent in list(nodeChildMap):
nodeChildMap[ parent ] = [ child ]
else:
nodeChildMap[ parent ] += [ child ]
# Separate non-tree edges, traversing from the root.
fringe = list(rootNodes)
# Filter non-tree edges.
nonTreeEdges = set([])
while len(fringe) > 0:
nextNode = fringe.pop(0)
# Skip leaf nodes.
if nextNode in list(nodeChildMap):
children = copy.deepcopy(nodeChildMap[ nextNode ])
for child in children:
numChildParents = len( nodeParentMap[ child ] )
# Filter edges to children that have more than
# one parent (i.e. other than nextNode)
if numChildParents == 1:
# Child in the tree found, put on fringe.
fringe += [ child ]
else:
# Shift edge to non-tree status.
nonTreeEdges.add((nextNode, child))
nodeChildMap[ nextNode ].remove(child)
nodeParentMap[ child ].remove(nextNode)
# Generate the tree edges from remaining child relationships.
treeEdges = []
for node in nodeChildMap:
for child in nodeChildMap[ node ]:
treeEdges += [ (node, child) ]
return (list(rootNodes), treeEdges, list(nonTreeEdges))
def removeAbsent(self):
"""Remove any absent edges from both graphs, and empty the fields
recording empty objects."""
for absEdge in self.absentEdges:
del self.elabels[ absEdge ]
for absNode in self.absentNodes:
del self.nlabels[ absNode ]
self.absentNodes = set([])
self.absentEdges = set([])
def addAbsent(self, lg2):
"""Identify edges in other graph but not the current one."""
selfNodes = set(list(self.nlabels))
lg2Nodes = set(list(lg2.nlabels))
self.absentNodes = lg2Nodes.difference(selfNodes)
# WARN about absent nodes/edges; indicate that there is an error.
if len(self.absentNodes) > 0:
sys.stderr.write(' !! Inserting ABSENT nodes for:\n ' \
+ self.file + ' vs.\n ' + lg2.file + '\n ' \
+ str(sorted(list(self.absentNodes))) + '\n')
self.error = True
# Add "absent" nodes.
# NOTE: all edges to/from "absent" nodes are unlabeled.
for missingNode in self.absentNodes:
self.nlabels[ missingNode ] = { 'ABSENT': 1.0 }
def matchAbsent(self, lg2):
"""Add all missing primitives and edges between this graph and
the passed graph. **Modifies both the object and argument graph lg2."""
self.removeAbsent()
self.addAbsent(lg2)
lg2.removeAbsent()
lg2.addAbsent(self)
##################################
# Routines for missing/unlabeled
# edges.
##################################
# Returns NONE: modifies in-place.
def labelMissingEdges(self):
for node1 in list(self.nlabels):
for node2 in list(self.nlabels):
if not node1 == node2:
if not (node1, node2) in list(self.elabels):
self.elabels[(node1, node2)] = {'_' : 1.0 }
# Returns NONE: modifies in-place.
def hideUnlabeledEdges(self):
"""Move all missing/unlabeled edges to the hiddenEdges field."""
# Move all edges labeled '_' to the hiddenEdges field.
for edge in list(self.elabels):
if set( list(self.elabels[ edge ]) ) == \
set( [ '_' ] ):
self.hiddenEdges[ edge ] = self.elabels[ edge ]
del self.elabels[ edge ]
def restoreUnlabeledEdges(self):
"""Move all edges in the hiddenEdges field back to the set of
edges for the graph."""
for edge in list(self.hiddenEdges):
self.elabels[ edge ] = self.hiddenEdges[ edge ]
del self.hiddenEdges[ edge ]
##################################
# Merging graphs
##################################
# RETURNS None (modifies 'self' in-place.)
def merge(self, lg2, ncombfn, ecombfn):
"""New node/edge labels are added from lg2 with common primitives. The
value for common node/edge labels updated using ncombfn and
ecombfn respectiveley: each function is applied to current values to
obtain the new value (i.e. v1' = fn(v1,v2))."""
# Deal with non-common primitives/nodes.
# DEBUG: make sure that all absent edges are treated as
# 'hard' decisions (i.e. label ('_',1.0))
self.matchAbsent(lg2)
#self.labelMissingEdges()
# Merge node and edgelabels.
mergeMaps(self.nlabels, self.gweight, lg2.nlabels, lg2.gweight, \
ncombfn)
mergeMaps(self.elabels, self.gweight, lg2.elabels, lg2.gweight,\
ecombfn)
# RETURNS None: modifies in-place.
def addWeightedLabelValues(self,lg2):
"""Merge two graphs, adding the values for each node/edge label."""
def addValues( v1, w1, v2, w2 ):
return w1 * v1 + w2 * v2
self.merge(lg2, addValues, addValues)
# RETURNS None: modifies in-place.
# HM: Added for IJDAR CROHME draft; invoke to filter a graph.
# (currenly not used by default).
def keepOnlyCorrectLab(self, gt):
"""Keep only correct labels compared with the gt. Use the
label ERROR_N and ERROR_E for node and edges errors. Use the
compareTools to compare the labels with ground truth."""
allNodes = set(list(gt.nlabels)).union(list(self.nlabels))
self.matchAbsent(gt)
for nid in allNodes:
(cost,_) = self.cmpNodes(list(self.nlabels[nid]),list(gt.nlabels[nid]))
#if there is some error
if cost > 0:
self.nlabels[ nid ] = {'ERROR_N' : 1.0}
else:
self.nlabels[ nid ] = gt.nlabels[nid]
for (graph,oGraph) in [ (self,gt), (gt,self) ]:
for npair in list(graph.elabels):
cost = 0;
if not npair in oGraph.elabels:
(cost,errL) = self.cmpEdges(list(graph.elabels[npair]),['_'])
else:
(cost,errL) = self.cmpEdges(list(graph.elabels[npair]),list(oGraph.elabels[npair]))
if cost > 0:
self.elabels[ npair ] = {'ERROR_E' : 1.0}
else:
if npair in gt.elabels:
self.elabels[ npair ] = gt.elabels[npair]
else:
self.elabels[ npair ] = {'_' : 1.0}
# RETURNS None: modifies in-place.
def selectMaxLabels(self):
"""Filter for labels with maximum confidence. NOTE: this will
keep all maximum value labels found in each map, e.g. if two
classifications have the same likelihood for a node."""
for object in list(self.nlabels):
max = -1.0
maxPairs = {}
for (label, value) in self.nlabels[object].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.nlabels[ object ] = maxPairs
for edge in list(self.elabels):
max = -1.0
maxPairs = {}
for (label, value) in self.elabels[edge].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.elabels[ edge ] = maxPairs
# RETURNS NONE: modifies in-place.
def invertValues(self):
"""Substract all node and edge label values from 1.0, to
invert the values. Attempting to invert a value outside [0,1] will
set the error flag on the object."""
for node in list(self.nlabels):
for label in self.nlabels[ node ]:
currentValue = self.nlabels[ node ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert node: ' \
+ node + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.nlabels[ node ][ label ] = 1.0 - currentValue
for edge in list(self.elabels):
for label in self.elabels[ edge ]:
currentValue = self.elabels[ edge ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert edge: ' + \
str(edge) + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.elabels[ edge ][ label ] = 1.0 - currentValue
def subStructIterator(self, nodeNumbers):
""" Return an iterator which gives all substructures with n nodes
n belonging to the list depths"""
if(isinstance(nodeNumbers, int)):
nodeNumbers = [nodeNumbers]
subStruct = []
# Init the substruct with isolated nodes
for n in list(self.nlabels):
subStruct.append(set([n]))
if 1 in nodeNumbers:
yield SmallGraph([(n, "".join(list(self.nlabels[n])))], [])
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
for d in range(2,max(nodeNumbers)+1):
#add one node to each substructure
newSubsS = set([])
newSubsL = []
for sub in subStruct:
le = getEdgesToNeighbours(sub,list(self.elabels))
for (f,to) in le:
new = sub.union([to])
lnew = list(new)
lnew.sort()
snew = ",".join(lnew)
if(not snew in newSubsS):
newSubsS.add(snew)
newSubsL.append(new)
if d in nodeNumbers:
yield self.getSubSmallGraph(new)
# ??? BUG ???
subStruct = newSubsL
def getSubSmallGraph(self, nodelist):
"""Return the small graph with the primitives in nodelist and all edges
between them. The used label is the merged list of labels from nodes/edges"""
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
for n in nodelist:
sg.nodes[n] = list(self.nlabels[n])
for e in getEdgesBetweenThem(nodelist,list(self.elabels)):
sg.edges[e] = list(self.elabels[e])
return sg
# Compare the substructure
def compareSubStruct(self, olg, depths):
"""Return the list of couple of substructure which disagree
the substructure from self are used as references"""
allerrors = []
for struc in olg.subStructIterator(depths):
sg1 = self.getSubSmallGraph(list(struc.nodes))
if(not (struc == sg1)):
allerrors.append((struc,sg1))
return allerrors
def compareSegmentsStruct(self, lgGT,depths):
"""Compute the number of differing segments, and record disagreements
in a list.
The primitives in each subgraph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value) pairs
on nodes and all identical incoming and outgoing edges. If used for
classification evaluation, the ground-truth should be lgGT. The first
key value of the matrix is the lgGT obj structure, which gives the
structure of the corresponding primitives which is the key to get the
error structure in self."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(spGT, psGT, _, sreGT) = lgGT.segmentGraph()
segDiffs = set()
correctSegments = set()
for primitive in list(psGT):
# Make sure to skip primitives that were missing ('ABSENT'),
# as in that case the graphs disagree on all non-identical node
# pairs for this primitive, and captured in self.absentEdges.
# RZ: Assuming one level of structure here; modifying for
# new data structures accomodating multiple structural levels.
obj1Id = ps1[primitive][ list(ps1[primitive])[0] ]
obj2Id = psGT[primitive][ list(psGT[primitive])[0] ]
if not 'ABSENT' in self.nlabels[primitive] and \
not 'ABSENT' in lgGT.nlabels[primitive]:
# Obtain sets of primitives sharing a segment for the current
# primitive for both graphs.
# Each of sp1/spGT are a map of ( {prim_set}, label ) pairs.
segPrimSet1 = sp1[ obj1Id ][0]
segPrimSet2 = spGT[ obj2Id ][0]
# Only create an entry where there are disagreements.
if segPrimSet1 != segPrimSet2:
segDiffs.add( ( obj2Id, obj1Id) )
else:
correctSegments.add( obj2Id )
# DEBUG: don't record differences for a single node.
elif len(list(self.nlabels)) > 1:
# If node was missing in this graph or the other, treat
# this graph as having a missing segment
# do not count the segment in graph with 1 primitive
segDiffs.add(( obj2Id, obj1Id ) )
# now check if the labels are identical
for seg in correctSegments:
# Get label for the first primtives (all primitives have identical
# labels in a segment).
# DEBUG: use only the set of labels, not confidence values.
firstPrim = list(spGT[seg][0])[0]
(cost, diff) = self.cmpNodes(list(self.nlabels[ firstPrim ]),list(lgGT.nlabels[ firstPrim ]))
segId1 = ps1[firstPrim][ list(ps1[ firstPrim ])[0] ]
segId2 = psGT[firstPrim][ list(psGT[ firstPrim ])[0] ]
if (0,[]) != (cost, diff):
segDiffs.add(( segId2, segId1) )
allSegWithErr = set([p for (p,_) in segDiffs])
# start to build the LG at the object level
# add nodes for object with the labels from the first prim
lgObj = Lg()
for (sid,lprim) in spGT.items():
lgObj.nlabels[sid] = lgGT.nlabels[list(lprim[0])[0]]
# Compute the specific 'segment-level' graph edges that disagree, at the
# level of primitive-pairs. This means that invalid segmentations may
# still have valid layouts in some cases.
# Add also the edges in the smallGraph
segEdgeErr = set()
for thisPair in list(sreGT):
# TODO : check if it is sp1[thisPair[0]] instead of sp1[thisPair[0]][0]
thisParentIds = set(spGT[ thisPair[0] ][0])
thisChildIds = set(spGT[thisPair[1] ][0])
lgObj.elabels[thisPair] = lgGT.elabels[ (list(thisParentIds)[0], list(thisChildIds)[0])]
# A 'correct' edge has the same label between all primitives
# in the two segments.
# NOTE: we are not checking the consitency of label in each graph
# ie if all labels from thisParentIds to thisChildIds in self are
# the same
for parentId in thisParentIds:
for childId in thisChildIds:
# DEBUG: compare only label sets, not values.
if not (parentId, childId) in list(self.elabels) or \
(0,[]) != self.cmpEdges(list(self.elabels[ (parentId, childId) ]), list(lgGT.elabels[ (parentId, childId) ])):
segEdgeErr.add(thisPair)
continue
listOfAllError = []
for smg in lgObj.subStructIterator(depths):
#if one segment is in the segment error set
showIt = False
if len(set(list(smg.nodes)).intersection(allSegWithErr)) > 0:
showIt = True
for pair in list(smg.edges):
if pair in segEdgeErr:
showIt = True
continue
if showIt:
#build the smg for the prim from lgGT
allPrim = []
for s in list(smg.nodes):
allPrim.extend(spGT[s][0])
smgPrim1 = self.getSubSmallGraph(allPrim)
smgPrimGT = lgGT.getSubSmallGraph(allPrim)
listOfAllError.append((smg,smgPrimGT,smgPrim1))
return listOfAllError
################################################################
# Utility functions
################################################################
def mergeLabelLists(llist1, weight1, llist2, weight2, combfn):
"""Combine values in two label lists according to the passed combfn
function, and passed weights for each label list."""
# Combine values for each label in lg2 already in self.
allLabels = set(llist1.items())\
.union(set(llist2.items()))
# have to test whether labels exist
# in one or both list.
for (label, value) in allLabels:
if label in list(llist1) and \
label in list(llist2):
llist1[ label ] = \
combfn( llist1[label], weight1,\
llist2[label], weight2 )
elif label in list(llist2):
llist1[ label ] = \
weight2 * llist2[label]
else:
llist1[ label ] = \
weight1 * llist1[label]
def mergeMaps(map1, weight1, map2, weight2, combfn):
"""Combine values in two maps according to the passed combfn
function, and passed weights for each map."""
# Odds are good that there are built-in function for this
# operation.
objects1 = list(map1)
objects2 = list(map2)
allObjects = set(objects1).union(set(objects2))
for object in allObjects:
if object in objects1 and object in objects2:
# Combine values for each label in lg2 already in self.
mergeLabelLists(map1[object],weight1, map2[object], weight2, combfn )
# DEBUG: no relationship ('missing') edges should
# be taken as certain (value 1.0 * weight) where not explicit.
elif object in objects2:
# Use copy to avoid aliasing problems.
# Use appropriate weight to update value.
map1[ object ] = copy.deepcopy( map2[ object ] )
for (label, value) in map1[object].items():
map1[object][label] = weight2 * value
map1[object]['_'] = weight1
else:
# Only in current map: weight value appropriately.
for (label, value) in map1[object].items():
map1[object][label] = weight1 * value
map1[object]['_'] = weight2
def getEdgesToNeighbours(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
neigb = set([])
for (n1,n2) in edges:
if (n1 in nodes and not n2 in nodes):
neigb.add((n1,n2))
return neigb
def getEdgesBetweenThem(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
edg = set([])
for (n1,n2) in edges:
if (n1 in nodes and n2 in nodes):
edg.add((n1,n2))
return edg