Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
################################################################
# lg.py - Bipartitite Graph Class
#
# Author: R. Zanibbi, June 2012
# Copyright (c) 2012, Richard Zanibbi and Harold Mouchere
################################################################
import csv
import sys
import math
import copy
class Lg(object):
"""Class for bipartite graphs where the two node sets are identical, and
multiple node and edge labels are permited. The graph and individual nodes
and edges have associated values (e.g. weights/probabilities)."""
# Define graph data elements ('data members' for an object in the class)
__slots__ = ('file','gweight','nlabels','elabels','error','absentNodes',\
'absentEdges','hiddenEdges')
##################################
# Constructors (in __init__)
##################################
def __init__(self,*args):
"""Graph data is read from a CSV file or provided node and edge label
dictionaries. If invalid entries are found, the error flag is set to
true, and graph input continues. In .lg files, blank lines are
ignored, and # may be used for comment lines in CSV graph files."""
self.error = False
self.gweight = 1.0
self.nlabels = {}
self.elabels = {}
self.absentNodes = set([])
self.absentEdges = set([])
self.hiddenEdges = {}
fileName = None
nodeLabels = {}
edgeLabels = {}
if len(args) == 1:
fileName = args[0]
self.file = fileName # DEBUG: add filename for debugging purposes.
else:
nodeLabels = args[0]
edgeLabels = args[1]
if fileName == None:
# CONSTRUCTOR 1: try to read in node and edge labels.
self.file = None
# Automatically convert identifiers and labels to strings if needed.
for nid in nodeLabels.keys():
if not isinstance(nid, str):
nid = str(nid)
newdict = {}
for label in nodeLabels[nid].keys():
if not isinstance(nid, str):
label = str(label)
# Weights need to be floats.
if not isinstance( nodeLabels[nid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for node ' + nid + ', label \"' \
+ label +"\": " + str(nodeLabels[nid][label]) + "\n")
newdict[ label ] = nodeLabels[nid][label]
self.nlabels[nid] = newdict
# WARNING: self-edges are not detected if edge labels used
# for initialization.
for eid in edgeLabels.keys():
if not isinstance(eid[0], str) or not isinstance(eid[1],str):
eid[0] = str(eid[0])
eid[1] = str(eid[1])
newdict = {}
for label in edgeLabels[eid].keys():
if not isinstance(label, str):
label = str(label)
if not isinstance( edgeLabels[eid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for edge ' + str(eid) + ', label \"' \
+ label +"\": " + str(edgeLabels[eid][label]) + "\n")
newdict[ label ] = edgeLabels[eid][label]
self.elabels[eid] = newdict
else:
# CONSTRUCTOR 2: Read graph data from CSV file.
MIN_NODE_ENTRY_LENGTH = 3
MIN_EDGE_ENTRY_LENGTH = 4
try:
fileReader = csv.reader(open(fileName))
except:
# Create an empty graph if a file cannot be found.
# Set the error flag.
sys.stderr.write(' !! IO Error (cannot open): ' + fileName + '\n')
self.error = True
return
for row in fileReader:
# Skip blank lines.
if len(row) == 0 or len(row) == 1 and row[0].strip() == '':
continue
entryType = row[0].strip()
if entryType == 'N':
if len(row) < MIN_NODE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid node entry length: ' \
'\n\t' + str(row) + '\n')
self.error = True
else:
nid = row[1].strip() # remove leading/trailing whitespace
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
nlabel = row[2].strip()
if nlabel in nlabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated node label entry ('\
+ self.file + '): ' \
+ '\n\t' + str(row) + '\n')
self.error = True
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[3])
else:
# New primitive; create new dictionary for
# provided label (row[2]) and value (row[3])
nid = row[1].strip()
nlabel = row[2].strip()
# Feb. 2013 - allow no weight to be provided.
if len(row) > MIN_NODE_ENTRY_LENGTH:
self.nlabels[ nid ] = { nlabel : float(row[3]) }
else:
self.nlabels[ nid ] = { nlabel : 1.0 }
elif entryType == 'E':
if len(row) < MIN_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid edge entry length: ' \
'\n\t' + str(row) + '\n')
self.error = True
else:
primPair = ( row[1].strip(), row[2].strip() )
if primPair[0] == primPair[1]:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
nid = primPair[0]
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
nlabel = row[3].strip()
if nlabel in nlabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated node label entry ('\
+ self.file + '): ' \
+ '\n\t' + str(row) + '\n')
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[4])
elif primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
elabel = row[3].strip()
if elabel in elabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated edge label entry (' \
+ self.file + '):\n\t' + str(row) + '\n')
self.error = True
# Add (or replace) entry for the label.
# Feb. 2013 - allow no weight.
if len(row) > MIN_EDGE_ENTRY_LENGTH:
elabelDict[ elabel ] = float(row[4])
else:
elabelDict[ elabel ] = 1.0
else:
# Add new edge label entry for the new edge label
# as a dictionary.
primPair = ( row[1].strip(), row[2].strip() )
elabel = row[3].strip()
self.elabels[ primPair ] = { elabel : float(row[4]) }
# DEBUG: complaints about empty lines here...
elif len(entryType.strip()) > 0 and entryType.strip()[0] == '#':
# Ignore lines with comments.
pass
else:
sys.stderr.write(' !! Invalid graph entry type (expect N/E): ' \
+ str(row) + '\n')
self.error = True
# Add any implicit nodes in edges explicitly to the hash table
# containing nodes. The 'nolabel' label is '_'.
anonNode = False
anodeList = []
for elabel in self.elabels.keys():
nid1 = elabel[0]
nid2 = elabel[1]
if not nid1 in self.nlabels.keys():
self.nlabels[ nid1 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid1 ]
anonNode = True
if not nid2 in self.nlabels.keys():
self.nlabels[ nid2 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid2 ]
anonNode = True
if anonNode:
sys.stderr.write(' ** Anonymous labels created for:\n\t' \
+ str(anodeList) + '\n')
##################################
# String, CSV output
##################################
def __str__(self):
nlabelcount = 0
elabelcount = 0
for nid in self.nlabels.keys():
nlabelcount = nlabelcount + len(self.nlabels[nid].keys())
for eid in self.elabels.keys():
elabelcount = elabelcount + len(self.elabels[eid].keys())
return 'Nodes: ' + str(len(self.nlabels.keys())) \
+ ' (labels: ' + str(nlabelcount) \
+ ') Edges: ' + str(len(self.elabels.keys())) \
+ ' (labels: ' + str(elabelcount) \
+ ') Error: ' + str(self.error)
def csv(self):
"""Construct CSV data file representation as a string."""
# NOTE: currently the graph value is not being stored...
nlist = []
elist = []
for nkey in self.nlabels.keys():
nodeLabels = self.nlabels[nkey]
for nlabel in nodeLabels.keys():
nstring = 'N,' + nkey + ',' + nlabel + ',' + \
str(nodeLabels[nlabel]) + '\n'
nlist = nlist + [ nstring ]
for npair in self.elabels.keys():
edgeLabels = self.elabels[npair]
for elabel in edgeLabels.keys():
estring = 'E,' + npair[0] + ',' + npair[1] + ',' + elabel + ',' + \
str(edgeLabels[ elabel ]) + '\n'
elist = elist + [ estring ]
# Sort the node and edge strings lexicographically.
# NOTE: this means that '10' precedes '2' in the sorted ordering
nlist.sort()
elist.sort()
sstring = ''
for nstring in nlist:
sstring = sstring + nstring
sstring += "\n"
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
for estring in elist:
sstring = sstring + estring
return sstring
##################################
# Construct segment-based graph
# for current graph state
##################################
def segmentGraph(self):
"""Return dictionaries from segments to strokes, strokes to segments,
segments without parents, and edges labeled as segment ('*')."""
primitiveSegmentMap = {}
segmentPrimitiveMap = {}
noparentSegments = []
segmentEdges = {} # Edges between detected objects (segments)
self.hideUnlabeledEdges()
# Note: a segmentation edge in either direction merges a primitive pair.
primSets = {}
for node in self.nlabels.keys():
primSets[node] = set([node])
for (n1, n2) in self.elabels.keys():
if '*' in self.elabels[(n1,n2)].keys():
primSets[n1] = primSets[n1].union( set([ n2 ]))
primSets[n2] = primSets[n2].union( set([ n1 ]))
# NOTE: Segments are currently assigned the label of the first
# primitive added to the segmentPrimitiveMap. THIS ASSUMES THAT
# ALL PRIMITIVES IN A SEGMENT ARE IDENTICALLY LABELED.
i = 0
segmentList = []
rootSegments = set([])
for primitive in primSets.keys():
alreadySegmented = False
for j in range(len(segmentList)):
if primitive in segmentList[j]:
primitiveSegmentMap[ primitive ] = 'seg' + str(j)
alreadySegmented = True
break
if not alreadySegmented:
# Add the new segment.
newSegment = 'seg' + str(i)
segmentList = segmentList + [ primSets[primitive] ]
segmentPrimitiveMap[ newSegment ] = ( primSets[primitive], \
self.nlabels[primitive] )
primitiveSegmentMap[ primitive ] = newSegment
rootSegments = rootSegments.union( set([ newSegment ]))
i += 1
# Identify 'root' objects/segments (i.e. with no incoming edges),
# and edges between objects. **We skip segmentation edges.
segEdges = {}
for (n1, n2) in self.elabels.keys():
segment1 = primitiveSegmentMap[n1]
segment2 = primitiveSegmentMap[n2]
if segment2 in rootSegments:
rootSegments.remove(segment2)
for label in self.elabels[(n1,n2)].keys():
if label != '*' and (segment1, segment2) in segmentEdges.keys():
if label in segmentEdges[ (segment1, segment2) ].keys():
# Sum weights for repeated labels
segmentEdges[ (segment1, segment2)][label] += \
self.elabels[(n1,n2)][label]
else:
# Add unaltered weights for new edge labels
segmentEdges[ (segment1, segment2) ][label] = \
self.elabels[(n1,n2)][label]
elif label != '*':
segmentEdges[ (segment1, segment2) ] = {}
segmentEdges[ (segment1, segment2) ][label] = \
self.elabels[(n1,n2)][label]
self.restoreUnlabeledEdges()
return (segmentPrimitiveMap, primitiveSegmentMap, list(rootSegments), \
segmentEdges)
##################################
# Metrics and Graph Differences
##################################
def compareSegments(self, lg2):
"""Compute the number of differing segments, and record disagreements.
The primitives in each graph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all incoming and outgoing edges."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(sp2, ps2, _, sre2) = lg2.segmentGraph()
byValue = lambda pair: pair[1] # define key for sort comparisons.
allNodes = set(ps1.keys())
assert allNodes == set(ps2.keys())
edgeDiffCount = 0
segDiffs = {}
correctSegments = []
correctSegmentIds = set([])
for primitive in ps1.keys():
# Make sure to skip primitives that were missing ('ABSENT'),
# as in that case the graphs disagree on all non-identical node
# pairs for this primitive, and captured in self.absentEdges.
if not 'ABSENT' in self.nlabels[primitive] and \
not 'ABSENT' in lg2.nlabels[primitive]:
# Obtain sets of primitives sharing a segment for the current
# primitive for both graphs.
segPrimSet1 = set([])
segPrimSet2 = set([])
# Each of sp1/sp2 are a map of ( {prim_set}, label ) pairs.
segPrimSet1 = sp1[ ps1[primitive] ][0]
segPrimSet2 = sp2[ ps2[primitive] ][0]
# Compute differences in node at opposite end.
diff1 = segPrimSet1.difference(segPrimSet2)
diff2 = segPrimSet2.difference(segPrimSet1)
unionDiffs = diff1.union(diff2)
differingEdges = len(unionDiffs)
edgeDiffCount = edgeDiffCount + differingEdges
# Only create an entry where there are disagreements.
if differingEdges > 0:
segDiffs[primitive] = ( diff1, diff2 )
else:
# Keep track of correct segments.
if not ps1[primitive] in correctSegmentIds:
correctSegmentIds.add(ps1[primitive])
correctSegments = correctSegments + \
[ (ps1[primitive], segPrimSet1) ]
# DEBUG: don't record differences for a single node.
elif 'ABSENT' in self.nlabels[primitive] \
and len(self.nlabels.keys()) > 1:
# If node was missing in this graph, treat this graph as having
# the opposite segmentation relationship of that in the other
# graph - in other words, total error, with all pairs incorrect.
# DEBUG: We are trying to define the opposite of the edges
# in the other graph in the case of an absent node.
# allOtherNodes = allNodes.difference(set([primitive]))
# ographSegPrimSet = set((sp2[ ps2[primitive] ])[0]).difference(set([primitive]))
# ediff = allOtherNodes.difference(ographSegPrimSet)
# edgeDiffCount = edgeDiffCount + len(ediff) + \
# len(ographSegPrimSet)
# segDiffs[primitive] = ( ediff, ographSegPrimSet )
#version CROHME
ographSegPrimSet = set((sp2[ ps2[primitive] ])[0]).difference(set([primitive]))
ediff = set([primitive])
edgeDiffCount = edgeDiffCount + len(ographSegPrimSet)
segDiffs[primitive] = ( ediff, ographSegPrimSet )
# DEBUG: don't record differences for a single node.
elif len(self.nlabels.keys()) > 1:
# Similar, for case where node is missing in lg2.
# allOtherNodes = allNodes.difference(set([primitive]))
# graphSegPrimSet = set((sp1[ ps1[primitive] ])[0]).difference(set([primitive]))
# ediff = allOtherNodes.difference(graphSegPrimSet)
# segDiffs[primitive] = ( graphSegPrimSet, ediff )
# edgeDiffCount = edgeDiffCount + len(ediff) + \
# len(graphSegPrimSet)
#version CROHME
graphSegPrimSet = set((sp1[ ps1[primitive] ])[0]).difference(set([primitive]))
ediff = set([primitive])
edgeDiffCount = edgeDiffCount + len(graphSegPrimSet)
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# Compute metrics
metrics = [ ("SegError", len(sp2.keys()) - len(correctSegments) ) ]
correctClass = 0
for (label, primSet) in correctSegments:
# Get label for the first primtives (all primitives have identical
# labels in a segment).
# DEBUG: use only the set of labels, not confidence values.
if set(self.nlabels[ list(primSet)[0] ].keys()) == \
set(lg2.nlabels[ list(primSet)[0] ].keys()):
correctClass += 1
metrics = metrics + [ ("ClassError", len(sp2.keys()) - correctClass) ]
metrics = metrics + [ ("nSeg", len(sp2.keys()) - len(lg2.absentNodes)) ]
metrics = metrics + [ ("detectedSeg", len(sp1.keys())) ]
# Metrics for edges over segments (number and detected...)
#metrics = metrics + [ ("nSegRelEdges", len(sre2.keys()) - len(lg2.absentEdges)) ]
metrics = metrics + [ ("dSegRelEdges", len(sre1.keys())) ]
# Compute the specific 'segment-level' graph edges that disagree, at the
# level of primitive-pairs. This means that invalid segmentations may
# still have valid layouts in some cases.
segRelErrors = 0
segRelEdgeDiffs = {}
segRelMatched = set([])
for thisPair in sre1.keys():
thisParentIds = set(sp1[ thisPair[0] ][0])
thisChildIds = set(sp1[thisPair[1] ][0])
# A 'correct' edge has the same label between all primitives
# in the two segments.
error = False
for parentId in thisParentIds:
for childId in thisChildIds:
# DEBUG: compare only label sets, not values.
if not (parentId, childId) in lg2.elabels.keys() or \
not set(self.elabels[ (parentId, childId) ].keys()) == \
set(lg2.elabels[ (parentId, childId) ].keys()):
error = True
segRelErrors += 1
segRelEdgeDiffs[ thisPair ] = [ ('Error',1.0) ]
continue
metrics = metrics + [ ("SegRelError", segRelErrors) ]
return (edgeDiffCount, segDiffs, correctSegments, metrics, segRelEdgeDiffs)
def compare(self, lg2):
"""Returns: 1. a list of (metric,value) pairs,
2. a list of (n1,n2) node disagreements, 3. (e1,e2) pairs
for edge disagreements, 4. dictionary from primitives to
disagreeing segment graph edges for (self, lg2). Node and
edge labels are compared using label sets without values, and
*not* labels sorted by value."""
metrics = []
nodeconflicts = []
edgeconflicts = []
byValue = lambda pair: pair[1] # define key for sort comparisons.
# FIX number of nodes as number in reference (lg2)
# For evaluation relative to ground truth, this is more appropriate
# than the (possibly expanded) number of targets after resolving
# absent nodes in both directions. Does lead to risk of negative
# accuracies (more errors than targets).
numNodes = len(lg2.nlabels.keys())
(sp2, ps2, _, sre2) = lg2.segmentGraph()
nSegRelEdges = len(sre2)
# Handle case of empty graphs, and missing primitives.
# SIDE EFFECT: 'ABSENT' nodes and edges added to each graph.
self.matchAbsent(lg2)
# METRICS
# Node and edge labels are considered as sets.
#numNodes = len(self.nlabels.keys())
nlabelMismatch = 0
numEdges = numNodes * (numNodes - 1) # No self-edges.
numLabels = numNodes + numEdges
elabelMismatch = 0
# Mismatched nodes.
nodeClassError = set()
for nid in self.nlabels.keys():
if not set(self.nlabels[nid].keys()) == set(lg2.nlabels[nid].keys()):
nlabelMismatch = nlabelMismatch + 1
# Merge labels.
thisSet = ''.join(sorted(self.nlabels[nid].keys()))
thatSet = ''.join(sorted(lg2.nlabels[nid].keys()))
# NOTE: this ignores label confidences - matching only.
nodeconflicts = nodeconflicts + \
[ (nid, [ (thisSet, 1.0) ], \
[(thatSet, 1.0)] ) ]
#nodeconflicts = nodeconflicts + \
# [ (nid, sorted(self.nlabels[nid].items(),key=byValue), \
# sorted(lg2.nlabels[nid].items(),key=byValue)) ]
nodeClassError = nodeClassError.union([nid])
# Two-sided comparison of *label sets* (look from absent edges in both
# graphs!) Must check whether edge exists; '_' represents a "NONE"
# label (no edge).
# Identify the set of nodes with disagreeing edges.
# (RZ: Nov. 2012)
nodeEdgeError = set()
for (graph,oGraph) in [ (self,lg2), (lg2,self) ]:
for npair in graph.elabels.keys():
if not npair in oGraph.elabels.keys() \
and (not len(graph.elabels[ npair ]) == 1 \
or not '_' in graph.elabels[ npair ]):
elabelMismatch = elabelMismatch + 1
(a,b) = npair
# Record nodes in invalid edge
nodeEdgeError = nodeEdgeError.union([a,b])
# DEBUG: Need to indicate correctly *which* graph has the
# missing edge; this graph (1st) or the other (listed 2nd).
if graph == self:
thisSet = ''.join(sorted(graph.elabels[npair].keys()))
edgeconflicts = edgeconflicts + \
[ (npair,[ (thisSet, 1.0) ],\
[('_', 1.0)]) ]
#edgeconflicts = edgeconflicts + \
# [ (npair, sorted(graph.elabels[npair].items(),\
# key=byValue), [('_', 1.0)]) ]
else:
thatSet = ''.join(sorted(lg2.elabels[npair].keys()))
edgeconflicts = edgeconflicts + \
[ (npair, [('_', 1.0)], \
[( thatSet, 1.0) ] ) ]
#edgeconflicts = edgeconflicts + \
# [ (npair, [('_', 1.0)], \
# sorted(graph.elabels[npair].items(),\
# key=byValue)) ]
# Obtain number of primitives with an error of any sort.
nodeError = nodeClassError.union(nodeEdgeError)
# One-sided comparison for common edges. Compared by
# label *sets* for edges in each graph.
for npair in self.elabels.keys():
if npair in lg2.elabels.keys() and \
not set(self.elabels[npair].keys()) == \
set(lg2.elabels[npair].keys()):
elabelMismatch = elabelMismatch + 1
(a,b) = npair
thisSet = ''.join(sorted(self.elabels[npair].keys()))
thatSet = ''.join(sorted(lg2.elabels[npair].keys()))
edgeconflicts = edgeconflicts + \
[ (npair, [ (thisSet, 1.0) ], \
[ (thatSet, 1.0) ] ) ]
#edgeconflicts = edgeconflicts + \
# [ (npair, sorted(self.elabels[npair].items(),key=byValue), \
# sorted(lg2.elabels[npair].items(),key=byValue)) ]
# Now compute segmentation differences.
(segMismatch, segDiffs, correctSegs, scMetrics, segRelDiffs) \
= self.compareSegments(lg2)
# UNDIRECTED/NODE PAIR METRICS
# Compute number of invalid nodePairs
badPairs = {}
for ((n1, n2), _, _) in edgeconflicts:
if not (n2, n1) in badPairs:
badPairs[(n1, n2)] = True
incorrectPairs = len(badPairs)
# Compute number of mis-segmented node pairs.
badSegPairs = {}
for node in segDiffs.keys():
for other in segDiffs[node][0]:
if not (other, node) in badSegPairs:
badSegPairs[(node, other)] = True
for other in segDiffs[node][1]:
if not (other, node) in badSegPairs:
badSegPairs[(node, other)] = True
segPairErrors = len(badSegPairs)
# Compute performance metrics; avoid divisions by 0.
cerror = ("D_C", nlabelMismatch)
cnerror = ("D_C(%)",0.0)
if numNodes > 0:
cnerror = ("D_C(%)", float(nlabelMismatch) / numNodes)
rerror = ("D_L", elabelMismatch)
rnerror = ("D_L(%)", 0.0)
snerror = ("D_S(%)", 0.0)
if numEdges > 0:
rnerror = ("D_L(%)", float(elabelMismatch) / numEdges)
snerror = ("D_S(%)", float(segMismatch) / numEdges)
serror = ("D_S", segMismatch)
aerror = ("D_B", nlabelMismatch + elabelMismatch)
anerror = ("D_Bn(%)",0.0)
if numLabels > 0:
anerror = ("D_Bn(%)", float(nlabelMismatch + elabelMismatch)/numLabels)
# DEBUG:
# Delta E BASE CASE: for a single node, which is absent in the other
# file, set label and segment edge mismatches to 1 (in order
# to obtain 1.0 as the error metric, i.e. total error).
if len(self.nlabels.keys()) == 1 and \
(len(self.absentNodes) > 0 or \
len(lg2.absentNodes) > 0):
elabelMismatch = 1
segMismatch = 1
errorVal = 0.0
if numEdges > 0:
errorVal += math.sqrt(float(segMismatch) / numEdges) + \
math.sqrt(float(elabelMismatch) / numEdges)
if numNodes > 0:
errorVal += float(nlabelMismatch) / numNodes
errorVal = errorVal / 3.0
eerror = ("D_E(%)", errorVal)
#eerror = ("D_E(%)", \
# (float(nlabelMismatch) / numNodes +
# math.sqrt(float(segMismatch) / numEdges) +
# math.sqrt(float(elabelMismatch) / numEdges)) / 3.0)
# Compile metrics
metrics = metrics + [ cerror, serror, rerror, anerror,\
eerror, cnerror, snerror, rnerror, aerror, \
("nNodes",numNodes), ("nEdges", numEdges), \
("nSegRelEdges", nSegRelEdges), \
("dPairs",incorrectPairs),("segPairErrors",segPairErrors),
("nodeCorrect", numNodes - len(nodeError))]
metrics = metrics + scMetrics
return (metrics, nodeconflicts, edgeconflicts, segDiffs, correctSegs,\
segRelDiffs)
##################################
# Manipulation/'Mutation'
##################################
def separateTreeEdges(self):
"""Return a list of root nodes, and two lists of edges corresponding to
tree/forest edges, and the remaining edges."""
# First, obtain segments; perform extraction on edges over segments.
(segmentPrimitiveMap, primitiveSegmentMap, noparentSegments, \
segmentEdges) = self.segmentGraph()
# Collect parents and children for each node; identify root nodes.
# (NOTE: root nodes provided already as noparentSegments)
nodeParentMap = {}
nodeChildMap = {}
rootNodes = set(segmentPrimitiveMap.keys())
for (parent, child) in segmentEdges:
if not child in nodeParentMap.keys():
nodeParentMap[ child ] = [ parent ]
rootNodes.remove( child )
else:
nodeParentMap[ child ] += [ parent ]
if not parent in nodeChildMap.keys():
nodeChildMap[ parent ] = [ child ]
else:
nodeChildMap[ parent ] += [ child ]
# Separate non-tree edges, traversing from the root.
fringe = list(rootNodes)
# Filter non-tree edges.
nonTreeEdges = set([])
while len(fringe) > 0:
nextNode = fringe.pop(0)
# Skip leaf nodes.
if nextNode in nodeChildMap.keys():
# DEBUG: need to copy the list of children, to avoid
# missing child nodes as d.structures are updated.
children = copy.deepcopy(nodeChildMap[ nextNode ])
for child in children:
numChildParents = len( nodeParentMap[ child ] )
# Filter edges to children that have more than
# one parent (i.e. other than nextNode)
if numChildParents == 1:
# Child in the tree found, put on fringe.
fringe += [ child ]
else:
# Shift edge to non-tree status.
nonTreeEdges.add((nextNode, child))
nodeChildMap[ nextNode ].remove(child)
nodeParentMap[ child ].remove(nextNode)
# Generate the tree edges from remaining child relationships.
treeEdges = []
for node in nodeChildMap:
for child in nodeChildMap[ node ]:
treeEdges += [ (node, child) ]
return (list(rootNodes), treeEdges, list(nonTreeEdges))
def removeAbsent(self):
"""Remove any absent edges from both graphs, and empty the fields
recording empty objects."""
for absEdge in self.absentEdges:
del self.elabels[ absEdge ]
for absNode in self.absentNodes:
del self.nlabels[ absNode ]
self.absentNodes = set([])
self.absentEdges = set([])
def addAbsent(self, lg2):
"""Identify edges in other graph but not the current one."""
selfNodes = set(self.nlabels.keys())
lg2Nodes = set(lg2.nlabels.keys())
self.absentNodes = lg2Nodes.difference(selfNodes)
# WARN about absent nodes/edges; indicate that there is an error.
if len(self.absentNodes) > 0:
sys.stderr.write(' !! Inserting ABSENT nodes for:\n ' \
+ self.file + ' vs.\n ' + lg2.file + '\n ' \
+ str(sorted(list(self.absentNodes))) + '\n')
self.error = True
# Add "absent" nodes.
for missingNode in self.absentNodes:
self.nlabels[ missingNode ] = { 'ABSENT': 1.0 }
# Add edges for absent elements, to every node in
# the now-expanded node set.
# for missingNode in self.absentNodes:
# for node in self.nlabels.keys():
# # Do not create self-edges.
# if not missingNode == node:
# self.elabels[ ( missingNode, node) ] = { 'ABSENT' : 1.0 }
# self.absentEdges.add( (missingNode, node) )
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
def matchAbsent(self, lg2):
"""Add all missing primitives and edges between this graph and
the passed graph. **Modifies both the object and argument graph lg2."""
self.removeAbsent()
self.addAbsent(lg2)
lg2.removeAbsent()
lg2.addAbsent(self)
##################################
# Routines for missing/unlabeled
# edges.
##################################
# Returns NONE: modifies in-place.
def labelMissingEdges(self):
for node1 in self.nlabels.keys():
for node2 in self.nlabels.keys():
if not node1 == node2:
if not (node1, node2) in self.elabels.keys():
self.elabels[(node1, node2)] = {'_' : 1.0 }
# Returns NONE: modifies in-place.
def hideUnlabeledEdges(self):
"""Move all missing/unlabeled edges to the hiddenEdges field."""
# Move all edges labeled '_' to the hiddenEdges field.
for edge in self.elabels.keys():
if set( self.elabels[ edge ].keys() ) == \
set( [ '_' ] ):
self.hiddenEdges[ edge ] = self.elabels[ edge ]
del self.elabels[ edge ]
def restoreUnlabeledEdges(self):
"""Move all edges in the hiddenEdges field back to the set of
edges for the graph."""
for edge in self.hiddenEdges.keys():
self.elabels[ edge ] = self.hiddenEdges[ edge ]
del self.hiddenEdges[ edge ]
##################################
# Merging graphs
##################################
# RETURNS None (modifies 'self' in-place.)
def merge(self, lg2, ncombfn, ecombfn):
"""New node/edge labels are added from lg2 with common primitives. The
value for common node/edge labels updated using ncombfn and
ecombfn respectiveley: each function is applied to current values to
obtain the new value (i.e. v1' = fn(v1,v2))."""
# Deal with non-common primitives/nodes.
# DEBUG: make sure that all absent edges are treated as
# 'hard' decisions (i.e. label ('_',1.0))
self.matchAbsent(lg2)
self.labelMissingEdges()
# Merge node and edgelabels.
mergeMaps(self.nlabels, self.gweight, lg2.nlabels, lg2.gweight, \
ncombfn)
mergeMaps(self.elabels, self.gweight, lg2.elabels, lg2.gweight,\
ecombfn)
# RETURNS None: modifies in-place.
def addWeightedLabelValues(self,lg2):
"""Merge two graphs, adding the values for each node/edge label."""
def addValues( v1, w1, v2, w2 ):
return w1 * v1 + w2 * v2
self.merge(lg2, addValues, addValues)
# RETURNS None: modifies in-place.
def selectMaxLabels(self):
"""Filter for labels with maximum confidence. NOTE: this will
keep all maximum value labels found in each map, e.g. if two
classifications have the same likelihood for a node."""
for object in self.nlabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.nlabels[object].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.nlabels[ object ] = maxPairs
for edge in self.elabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.elabels[edge].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.elabels[ edge ] = maxPairs
# RETURNS NONE: modifies in-place.
def invertValues(self):
"""Substract all node and edge label values from 1.0, to
invert the values. Attempting to invert a value outside [0,1] will
set the error flag on the object."""
for node in self.nlabels.keys():
for label in self.nlabels[ node ]:
currentValue = self.nlabels[ node ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert node: ' \
+ node + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.nlabels[ node ][ label ] = 1.0 - currentValue
for edge in self.elabels.keys():
for label in self.elabels[ edge ]:
currentValue = self.elabels[ edge ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert edge: ' + \
str(edge) + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.elabels[ edge ][ label ] = 1.0 - currentValue
################################################################
# Utility functions
################################################################
def mergeLabelLists(llist1, weight1, llist2, weight2, combfn):
"""Combine values in two label lists according to the passed combfn
function, and passed weights for each label list."""
# Combine values for each label in lg2 already in self.
allLabels = set(llist1.items())\
.union(set(llist2.items()))
# have to test whether labels exist
# in one or both list.
for (label, value) in allLabels:
if label in llist1.keys() and \
label in llist2.keys():
llist1[ label ] = \
combfn( llist1[label], weight1,\
llist2[label], weight2 )
elif label in llist2.keys():
llist1[ label ] = \
weight2 * llist2[label]
else:
llist1[ label ] = \
weight1 * llist1[label]
def mergeMaps(map1, weight1, map2, weight2, combfn):
"""Combine values in two maps according to the passed combfn
function, and passed weights for each map."""
# Odds are good that there are built-in function for this
# operation.
objects1 = map1.keys()
objects2 = map2.keys()
allObjects = set(objects1).union(set(objects2))
for object in allObjects:
if object in objects1 and object in objects2:
# Combine values for each label in lg2 already in self.
mergeLabelLists(map1[object],weight1, map2[object], weight2, combfn )
# DEBUG: no relationship ('missing') edges should
# be taken as certain (value 1.0 * weight) where not explicit.
elif object in objects2:
# Use copy to avoid aliasing problems.
# Use appropriate weight to update value.
map1[ object ] = copy.deepcopy( map2[ object ] )
for (label, value) in map1[object].items():
map1[object][label] = weight2 * value
map1[object]['_'] = weight1
else:
# Only in current map: weight value appropriately.
for (label, value) in map1[object].items():
map1[object][label] = weight1 * value
map1[object]['_'] = weight2