Newer
Older
################################################################
# lg.py - Bipartitite Graph Class
#
# Author: R. Zanibbi, June 2012
# Copyright (c) 2012, Richard Zanibbi and Harold Mouchere
################################################################
import csv
import sys
import math
import copy
import compareTools
class Lg(object):
"""Class for bipartite graphs where the two node sets are identical, and
multiple node and edge labels are permited. The graph and individual nodes
and edges have associated values (e.g. weights/probabilities)."""
# Define graph data elements ('data members' for an object in the class)
__slots__ = ('file','gweight','nlabels','elabels','error','absentNodes',\
'absentEdges','hiddenEdges', 'cmpNodes', 'cmpEdges')
##################################
# Constructors (in __init__)
##################################
def __init__(self,*args):
"""Graph data is read from a CSV file or provided node and edge label
dictionaries. If invalid entries are found, the error flag is set to
true, and graph input continues. In .lg files, blank lines are
ignored, and # may be used for comment lines in CSV graph files."""
self.error = False
self.gweight = 1.0
self.nlabels = {}
self.elabels = {}
self.absentNodes = set([])
self.absentEdges = set([])
self.hiddenEdges = {}
self.cmpNodes = compareTools.cmpNodes
self.cmpEdges = compareTools.cmpEdges
fileName = None
nodeLabels = {}
edgeLabels = {}
if len(args) == 1:
fileName = args[0]
self.file = fileName # DEBUG: add filename for debugging purposes.
elif len(args) == 2:
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
nodeLabels = args[0]
edgeLabels = args[1]
if fileName == None:
# CONSTRUCTOR 1: try to read in node and edge labels.
self.file = None
# Automatically convert identifiers and labels to strings if needed.
for nid in nodeLabels.keys():
if not isinstance(nid, str):
nid = str(nid)
newdict = {}
for label in nodeLabels[nid].keys():
if not isinstance(nid, str):
label = str(label)
# Weights need to be floats.
if not isinstance( nodeLabels[nid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for node ' + nid + ', label \"' \
+ label +"\": " + str(nodeLabels[nid][label]) + "\n")
newdict[ label ] = nodeLabels[nid][label]
self.nlabels[nid] = newdict
# WARNING: self-edges are not detected if edge labels used
# for initialization.
for eid in edgeLabels.keys():
if not isinstance(eid[0], str) or not isinstance(eid[1],str):
eid[0] = str(eid[0])
eid[1] = str(eid[1])
newdict = {}
for label in edgeLabels[eid].keys():
if not isinstance(label, str):
label = str(label)
if not isinstance( edgeLabels[eid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for edge ' + str(eid) + ', label \"' \
+ label +"\": " + str(edgeLabels[eid][label]) + "\n")
newdict[ label ] = edgeLabels[eid][label]
self.elabels[eid] = newdict
else:
# CONSTRUCTOR 2: Read graph data from CSV file.
MIN_NODE_ENTRY_LENGTH = 3
MIN_EDGE_ENTRY_LENGTH = 4
MIN_OBJECT_ENTRY_LENGTH = 5
MIN_OBJECT_EDGE_ENTRY_LENGTH = 5
try:
fileReader = csv.reader(open(fileName))
except:
# Create an empty graph if a file cannot be found.
# Set the error flag.
sys.stderr.write(' !! IO Error (cannot open): ' + fileName + '\n')
self.error = True
return
objectDict = dict([])
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
for row in fileReader:
# Skip blank lines.
if len(row) == 0 or len(row) == 1 and row[0].strip() == '':
continue
entryType = row[0].strip()
if entryType == 'N':
if len(row) < MIN_NODE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid node entry length: ' \
'\n\t' + str(row) + '\n')
self.error = True
else:
nid = row[1].strip() # remove leading/trailing whitespace
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
nlabel = row[2].strip()
if nlabel in nlabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated node label entry ('\
+ self.file + '): ' \
+ '\n\t' + str(row) + '\n')
self.error = True
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[3])
else:
# New primitive; create new dictionary for
# provided label (row[2]) and value (row[3])
nid = row[1].strip()
nlabel = row[2].strip()
# Feb. 2013 - allow no weight to be provided.
if len(row) > MIN_NODE_ENTRY_LENGTH:
self.nlabels[ nid ] = { nlabel : float(row[3]) }
else:
self.nlabels[ nid ] = { nlabel : 1.0 }
elif entryType == 'E':
if len(row) < MIN_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid edge entry length: ' \
'\n\t' + str(row) + '\n')
self.error = True
else:
primPair = ( row[1].strip(), row[2].strip() )
if primPair[0] == primPair[1]:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
nid = primPair[0]
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
nlabel = row[3].strip()
if nlabel in nlabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated node label entry ('\
+ self.file + '): ' \
+ '\n\t' + str(row) + '\n')
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[4])
elif primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
elabel = row[3].strip()
if elabel in elabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated edge label entry (' \
+ self.file + '):\n\t' + str(row) + '\n')
self.error = True
# Add (or replace) entry for the label.
# Feb. 2013 - allow no weight.
if len(row) > MIN_EDGE_ENTRY_LENGTH:
elabelDict[ elabel ] = float(row[4])
else:
elabelDict[ elabel ] = 1.0
else:
# Add new edge label entry for the new edge label
# as a dictionary.
primPair = ( row[1].strip(), row[2].strip() )
elabel = row[3].strip()
self.elabels[ primPair ] = { elabel : float(row[4]) }
elif entryType == 'O':
if len(row) < MIN_OBJECT_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: ' \
'\n\t' + str(row) + '\n')
self.error = True
else:
rawnodeList = row[4:] # get all other item as node id
oid = row[1].strip()
nlabel = row[2].strip()
nValue = float(row[3].strip())
nodeList = []
# add all nodes
for n in rawnodeList:
nid = n.strip()
nodeList.append(nid)
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
if nlabel in nlabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated node label entry '+str(nid)+'('\
+ self.file + '): ' \
+ '\n\t' + str(row) + '\n')
self.error = True
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = nValue
else:
# New primitive; create new dictionary for
# provided label and value
# Feb. 2013 - allow no weight to be provided.
self.nlabels[ nid ] = { nlabel : nValue }
#save the nodes of this object
objectDict[oid] = nodeList
#add all edges
for nid1 in nodeList:
#nid1 = n1.strip()
for nid2 in nodeList:
#nid2 = n2.strip()
if nid1 != nid2:
primPair = ( nid1, nid2 )
elabel = nlabel#'*' #segmentation
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
if primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
if elabel in elabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated edge label entry (' \
+ self.file + '):\n\t' + str(row) + '\n')
self.error = True
else:
# Add (or replace) entry for the label.
elabelDict[ elabel ] = nValue
else:
# Add new edge label entry for the new edge label
# as a dictionary.
self.elabels[ primPair ] = { elabel : nValue }
elif entryType == 'EO':
if len(row) < MIN_OBJECT_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: ' \
'\n\t' + str(row) + '\n')
self.error = True
else:
oid1 = row[1].strip()
oid2 = row[2].strip()
elabel = row[3].strip()
eValue = float(row[4].strip())
if not oid1 in objectDict:
sys.stderr.write(' !! Invalid object id: ' + oid1+\
'\n\t' + str(row) + '\n')
self.error = True
if not oid2 in objectDict:
sys.stderr.write(' !! Invalid object id: ' + oid2+\
'\n\t' + str(row) + '\n')
self.error = True
if not self.error:
nodeList1 = objectDict[oid1] # get all other item as node id
nodeList2 = objectDict[oid2] # get all other item as node id
for nid1 in nodeList1:
for nid2 in nodeList2:
if nid1 != nid2:
primPair = ( nid1, nid2 )
if primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
if elabel in elabelDict:
# Note possible error.
sys.stderr.write(' !! Repeated edge label entry (' \
+ self.file + '):\n\t' + str(row) + '\n')
self.error = True
else:
# Add (or replace) entry for the label.
elabelDict[ elabel ] = eValue
else:
# Add new edge label entry for the new edge label
# as dictionary.
self.elabels[ primPair ] = { elabel : eValue }
else:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
# DEBUG: complaints about empty lines here...
elif len(entryType.strip()) > 0 and entryType.strip()[0] == '#':
# Ignore lines with comments.
pass
else:
sys.stderr.write(' !! Invalid graph entry type (expect N/E/O/EO): ' \
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
+ str(row) + '\n')
self.error = True
# Add any implicit nodes in edges explicitly to the hash table
# containing nodes. The 'nolabel' label is '_'.
anonNode = False
anodeList = []
for elabel in self.elabels.keys():
nid1 = elabel[0]
nid2 = elabel[1]
if not nid1 in self.nlabels.keys():
self.nlabels[ nid1 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid1 ]
anonNode = True
if not nid2 in self.nlabels.keys():
self.nlabels[ nid2 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid2 ]
anonNode = True
if anonNode:
sys.stderr.write(' ** Anonymous labels created for:\n\t' \
+ str(anodeList) + '\n')
##################################
# String, CSV output
##################################
def __str__(self):
nlabelcount = 0
elabelcount = 0
for nid in self.nlabels.keys():
nlabelcount = nlabelcount + len(self.nlabels[nid].keys())
for eid in self.elabels.keys():
elabelcount = elabelcount + len(self.elabels[eid].keys())
return 'Nodes: ' + str(len(self.nlabels.keys())) \
+ ' (labels: ' + str(nlabelcount) \
+ ') Edges: ' + str(len(self.elabels.keys())) \
+ ' (labels: ' + str(elabelcount) \
+ ') Error: ' + str(self.error)
def csv(self):
"""Construct CSV data file representation as a string."""
# NOTE: currently the graph value is not being stored...
nlist = []
elist = []
for nkey in self.nlabels.keys():
nodeLabels = self.nlabels[nkey]
for nlabel in nodeLabels.keys():
nstring = 'N,' + nkey + ',' + nlabel + ',' + \
str(nodeLabels[nlabel]) + '\n'
nlist = nlist + [ nstring ]
for npair in self.elabels.keys():
edgeLabels = self.elabels[npair]
for elabel in edgeLabels.keys():
estring = 'E,' + npair[0] + ',' + npair[1] + ',' + elabel + ',' + \
str(edgeLabels[ elabel ]) + '\n'
elist = elist + [ estring ]
# Sort the node and edge strings lexicographically.
# NOTE: this means that '10' precedes '2' in the sorted ordering
nlist.sort()
elist.sort()
sstring = ''
for nstring in nlist:
sstring = sstring + nstring
sstring += "\n"
for estring in elist:
sstring = sstring + estring
return sstring
##################################
# Construct segment-based graph
# for current graph state
##################################
def segmentGraph(self):
"""Return dictionaries from segments to strokes, strokes to segments,
segments without parents, and edges labeled as segment ('*')."""
primitiveSegmentMap = {}
segmentPrimitiveMap = {}
#noparentSegments = []
segmentEdges = {} # Edges between detected objects (segments)
self.hideUnlabeledEdges()
# Note: a segmentation edge in either direction merges a primitive pair.
primSets = {}
for node,labs in self.nlabels.items():
primSets[node] = {}
for l in labs:
primSets[node][l] = set([node])
commonLabels = set(self.nlabels[n1].keys()).intersection(self.nlabels[n2].keys(),self.elabels[(n1,n2)].keys())
for l in commonLabels:
primSets[n1][l].add(n2)
primSets[n2][l].add(n1)
# NOTE: Segments can have multiple label
# warning: a primitive can belong to several different
# segments with different sets of primitives and different label.
# but there is only one segment with the same label attached to each primitive
# (not possible to represent several segmentation hypothesis of the same symbol)
#for each label associated with each prim, there is a potential seg
for primitive,segments in primSets.items():
for lab in segments.keys():
alreadySegmented = False
for j in range(len(segmentList)):
if segments[lab] == segmentList[j]["prim"]:
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
primitiveSegmentMap[ primitive ][lab] = 'seg' + str(j)
alreadySegmented = True
if lab not in segmentList[j]["label"]:
segmentPrimitiveMap[ 'seg' + str(j) ][1].append(lab)
segmentList[j]["label"].add(lab)
break
if not alreadySegmented:
# Add the new segment.
newSegment = 'seg' + str(i)
segmentList = segmentList + [ {"label":{lab},"prim":primSets[primitive][lab]} ]
segmentPrimitiveMap[ newSegment ] = (segments[lab],[lab])
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
primitiveSegmentMap[ primitive ][lab] = newSegment
rootSegments.add(newSegment)
i += 1
# Identify 'root' objects/segments (i.e. with no incoming edges),
# and edges between objects. **We skip segmentation edges.
for (n1, n2),elabs in self.elabels.items():
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
segment2 = primitiveSegmentMap[n2]
#for all possible pair of segments with these two primitives, look for the effective relation labels
possibleRelationLabels = set(elabs.keys()).difference(self.nlabels[n1].keys(),self.nlabels[n2].keys())
if len(possibleRelationLabels) != 0:
#for all pair of labels
for l1,pset1 in segment1.items():
for l2, pset2 in segment2.items():
#if not in the same seg
if pset1 != pset2:
#look for the label which is common for all primitive pair in the two segments
theRelationLab = possibleRelationLabels
for p1 in primSets[n1][l1]:
for p2 in primSets[n2][l2]:
if(p1,p2) in self.elabels:
theRelationLab &= self.elabels[(p1,p2)].keys()
else:
theRelationLab = set([]) # it should be a clique !
if len(theRelationLab) == 0:
break
if len(theRelationLab) == 0:
break
# there is a common relation if theRelationLab is not empty
if len(theRelationLab) != 0:
#we can remove seg2 from the roots
if pset2 in rootSegments:
rootSegments.remove(pset2)
#print (str((n1, n2))+ " => " + str(( pset1, pset2)) + " = " + str(theRelationLab))
for label in theRelationLab:
if ( pset1, pset2) in segmentEdges:
if label in segmentEdges[ ( pset1, pset2) ]:
# Sum weights for repeated labels
segmentEdges[ ( pset1, pset2)][label] += \
self.elabels[(n1,n2)][label]
else:
# Add unaltered weights for new edge labels
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
else:
segmentEdges[ ( pset1, pset2) ] = {}
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
self.restoreUnlabeledEdges()
return (segmentPrimitiveMap, primitiveSegmentMap, list(rootSegments), \
segmentEdges)
##################################
# Metrics and Graph Differences
##################################
def compareSegments(self, lg2):
"""Compute the number of differing segments, and record disagreements.
The primitives in each graph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all incoming and outgoing edges."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(sp2, ps2, _, sre2) = lg2.segmentGraph()
#byValue = lambda pair: pair[1] # define key for sort comparisons.
#FIX : this this not the case in spare representation
assert allNodes == set(ps2.keys())
edgeDiffCount = 0
segDiffs = {}
correctSegments = set([])
correctSegmentsAndClass = set([])
# list and count the edges errors which are due to segmentation errors
# use cmpNodes to compare the labels of symbols
# idea : build the sub graph with the current primitive as center and only
for primitive in ps1.keys():
# Make sure to skip primitives that were missing ('ABSENT'),
# as in that case the graphs disagree on all non-identical node
# pairs for this primitive, and captured in self.absentEdges.
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
# if not 'ABSENT' in self.nlabels[primitive] and \
# not 'ABSENT' in lg2.nlabels[primitive]:
#the 2 sub graphs
edgeFromP1 = {}
edgeFromP2 = {}
for (lab1,seg1) in ps1[primitive].items():
for p in sp1[seg1][0]:
if p != primitive:
if p in edgeFromP1:
edgeFromP1[p].append(lab1)
else:
edgeFromP1[p] = [lab1]
for (lab2,seg2) in ps2[primitive].items():
for p in sp2[seg2][0]:
if p != primitive:
if p in edgeFromP2:
edgeFromP2[p].append(lab2)
else:
edgeFromP2[p] = [lab2]
# Compute differences in edges labels with cmpNodes (as they are symbol labels)
diff1 = set([])
diff2 = set([])
# first add differences for shared primitives
commonPrim = set(edgeFromP1.keys()).intersection(edgeFromP2.keys())
for p in commonPrim:
(cost,diff) = self.cmpNodes(edgeFromP1[p], edgeFromP2[p])
edgeDiffCount = edgeDiffCount + cost
if cost > 0: #by someway, they disagree, thus add in both sets
diff1.add(p)
diff2.add(p)
#then add differences for primitives which are not is the other set
for p in (set(edgeFromP1.keys()) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP1[p], [])
edgeDiffCount = edgeDiffCount + cost
diff1.add(p)
for p in (set(edgeFromP2.keys()) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP2[p], [])
edgeDiffCount = edgeDiffCount + cost
diff2.add(p)
# Only create an entry where there are disagreements.
if len(diff1)+len(diff2) > 0:
# look for correct segments, ie primitive sets which are the same in both graphs
#NOTE: even if this algorithm is not symmetric, the result is symmetric
# print ("ps1="+str(ps1))
# print ("ps2="+str(ps2))
for (lab1,seg1) in ps1[primitive].items():
#print ("pour "+ str((lab1,seg1)))
if(seg1, lab1) not in correctSegmentsAndClass: # already found, no need to search
for (lab2,seg2) in ps2[primitive].items():
# print (" > pour "+ str((lab2,seg2)))
# print (" > " + str(sp1[seg1][0]) + "vs"+str(sp2[seg2][0]))
if sp1[seg1][0] == sp2[seg2][0]:
# print ("OK"+str((seg1, lab1)))
correctSegments.add(seg1)
(cost,_) = self.cmpNodes([lab1],[lab2]) # do not use spX[segX][1] because we can want to count each correct label as 1 even if there is an error in some labels in the same set
if (cost == 0):
correctSegmentsAndClass.add((seg1, lab1))
# DEBUG: don't record differences for a single node.
# elif 'ABSENT' in self.nlabels[primitive] \
# and len(self.nlabels.keys()) > 1:
# If node was missing in this graph, treat this graph as having
# the opposite segmentation relationship of that in the other
# graph - in other words, total error, with all pairs incorrect.
# DEBUG: We are trying to define the opposite of the edges
# in the other graph in the case of an absent node.
# allOtherNodes = allNodes.difference(set([primitive]))
# ographSegPrimSet = set((sp2[ ps2[primitive] ])[0]).difference(set([primitive]))
# ediff = allOtherNodes.difference(ographSegPrimSet)
# edgeDiffCount = edgeDiffCount + len(ediff) + \
# len(ographSegPrimSet)
# segDiffs[primitive] = ( ediff, ographSegPrimSet )
#version CROHME
# ographSegPrimSet = set((sp2[ ps2[primitive] ])[0]).difference(set([primitive]))
# ediff = set([primitive])
# edgeDiffCount = edgeDiffCount + len(ographSegPrimSet)
# segDiffs[primitive] = ( ediff, ographSegPrimSet )
# DEBUG: don't record differences for a single node.
# elif len(self.nlabels.keys()) > 1:
# allOtherNodes = allNodes.difference(set([primitive]))
# graphSegPrimSet = set((sp1[ ps1[primitive] ])[0]).difference(set([primitive]))
# ediff = allOtherNodes.difference(graphSegPrimSet)
# segDiffs[primitive] = ( graphSegPrimSet, ediff )
# edgeDiffCount = edgeDiffCount + len(ediff) + \
# len(graphSegPrimSet)
# version CROHME
# graphSegPrimSet = set((sp1[ ps1[primitive] ])[0]).difference(set([primitive]))
# ediff = set([primitive])
# segDiffs[primitive] = ( graphSegPrimSet, ediff )
# edgeDiffCount = edgeDiffCount + len(graphSegPrimSet)
# Compute metrics
metrics = [ ("SegError", len(sp2.keys()) - len(correctSegments) ) ]
nbSegmClass = 0
for (_,labs) in sp2.items():
nbSegmClass += len(labs[1])
metrics = metrics + [ ("ClassError", nbSegmClass - len(correctSegmentsAndClass)) ]
metrics = metrics + [ ("nSeg", len(sp2.keys()) - len(lg2.absentNodes)) ]
metrics = metrics + [ ("detectedSeg", len(sp1.keys())) ]
# Metrics for edges over segments (number and detected...)
#metrics = metrics + [ ("nSegRelEdges", len(sre2.keys()) - len(lg2.absentEdges)) ]
metrics = metrics + [ ("dSegRelEdges", len(sre1.keys())) ]
# Compute the specific 'segment-level' graph edges that disagree, at the
# level of primitive-pairs. This means that invalid segmentations may
# still have valid layouts in some cases.
segRelErrors = 0
segRelEdgeDiffs = {}
#segRelMatched = set([])
for thisPair in sre1.keys():
thisParentIds = set(sp1[ thisPair[0] ][0])
thisChildIds = set(sp1[thisPair[1] ][0])
# A 'correct' edge has the same label between all primitives
# in the two segments.
error = False
for parentId in thisParentIds:
for childId in thisChildIds:
# DEBUG: compare only label sets, not values.
if not (parentId, childId) in lg2.elabels.keys() or \
not ((0,[]) == self.cmpEdges(self.elabels[ (parentId, childId) ].keys(),lg2.elabels[ (parentId, childId) ].keys())):
# not set(self.elabels[ (parentId, childId) ].keys()) == \
# set(lg2.elabels[ (parentId, childId) ].keys()):
error = True
segRelErrors += 1
segRelEdgeDiffs[ thisPair ] = [ ('Error',1.0) ]
continue
self.error |= error
metrics = metrics + [ ("SegRelError", segRelErrors) ]
return (edgeDiffCount, segDiffs, correctSegments, metrics, segRelEdgeDiffs)
def compare(self, lg2):
"""Returns: 1. a list of (metric,value) pairs,
2. a list of (n1,n2) node disagreements, 3. (e1,e2) pairs
for edge disagreements, 4. dictionary from primitives to
disagreeing segment graph edges for (self, lg2). Node and
edge labels are compared using label sets without values, and
*not* labels sorted by value."""
metrics = []
nodeconflicts = []
edgeconflicts = []
#byValue = lambda pair: pair[1] # define key for sort comparisons.
# FIX number of nodes as number in reference (lg2)
# For evaluation relative to ground truth, this is more appropriate
# than the (possibly expanded) number of targets after resolving
# absent nodes in both directions. Does lead to risk of negative
# accuracies (more errors than targets).
# FIXED ( HM ) use the union of all nodes label instead of only lg2 ones
# it change the nlabelMismatch, nodeClassError and so D_C and all rates values
# numNodes = len(lg2.nlabels.keys())
allNodes = set(lg2.nlabels.keys()).union(self.nlabels.keys())
numNodes = len(allNodes)
(sp2, ps2, _, sre2) = lg2.segmentGraph()
nSegRelEdges = len(sre2)
# Handle case of empty graphs, and missing primitives.
# SIDE EFFECT: 'ABSENT' nodes and edges added to each graph.
self.matchAbsent(lg2)
# METRICS
# Node and edge labels are considered as sets.
#numNodes = len(self.nlabels.keys())
nlabelMismatch = 0
numEdges = numNodes * (numNodes - 1) # No self-edges.
numLabels = numNodes + numEdges
elabelMismatch = 0
# Mismatched nodes.
nodeClassError = set()
for nid in allNodes: #self.nlabels.keys():
(cost,errL) = self.cmpNodes(self.nlabels[nid].keys(),lg2.nlabels[nid].keys())
#if there is some error
if cost > 0:
# add mismatch
nlabelMismatch = nlabelMismatch + cost
# add errors in error list
for (l1,l2) in errL:
nodeconflicts = nodeconflicts + [ (nid, [ (l1, 1.0) ], [(l2, 1.0)] ) ]
# add node in error list
nodeClassError = nodeClassError.union([nid])
# Two-sided comparison of *label sets* (look from absent edges in both
# graphs!) Must check whether edge exists; '_' represents a "NONE"
# label (no edge).
# Identify the set of nodes with disagreeing edges.
# (RZ: Nov. 2012)
nodeEdgeError = set()
for (graph,oGraph) in [ (self,lg2), (lg2,self) ]:
for npair in graph.elabels.keys():
if not npair in oGraph.elabels \
and (not graph.elabels[ npair ] == ['_']):
(cost,errL) = self.cmpEdges(graph.elabels[ npair ].keys(),['_'])
elabelMismatch = elabelMismatch + cost
nodeEdgeError.update([a,b])
# DEBUG: Need to indicate correctly *which* graph has the
# missing edge; this graph (1st) or the other (listed 2nd).
conflictList = []
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l2, 1.0) ], [(l1, 1.0)] ) )
edgeconflicts.extend(conflictList)
# Obtain number of primitives with an error of any sort.
nodeError = nodeClassError.union(nodeEdgeError)
# One-sided comparison for common edges. Compared by cmpEdges
if npair in lg2.elabels.keys():
(cost,errL) = self.cmpEdges(self.elabels[npair].keys(),lg2.elabels[npair].keys())
if cost > 0:
elabelMismatch = elabelMismatch + cost
(a,b) = npair
# Record nodes in invalid edge
nodeEdgeError.update([a,b])
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
# Now compute segmentation differences.
(segMismatch, segDiffs, correctSegs, scMetrics, segRelDiffs) \
= self.compareSegments(lg2)
# UNDIRECTED/NODE PAIR METRICS
# Compute number of invalid nodePairs
badPairs = {}
for ((n1, n2), _, _) in edgeconflicts:
if not (n2, n1) in badPairs:
badPairs[(n1, n2)] = True
incorrectPairs = len(badPairs)
# Compute number of mis-segmented node pairs.
badSegPairs = set([])
for node in segDiffs.keys():
for other in segDiffs[node][0]:
if node != other and (other, node) not in badSegPairs:
badSegPairs.add((node, other))
if node != other and (other, node)not in badSegPairs:
badSegPairs.add((node, other))
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
segPairErrors = len(badSegPairs)
# Compute performance metrics; avoid divisions by 0.
cerror = ("D_C", nlabelMismatch)
cnerror = ("D_C(%)",0.0)
if numNodes > 0:
cnerror = ("D_C(%)", float(nlabelMismatch) / numNodes)
rerror = ("D_L", elabelMismatch)
rnerror = ("D_L(%)", 0.0)
snerror = ("D_S(%)", 0.0)
if numEdges > 0:
rnerror = ("D_L(%)", float(elabelMismatch) / numEdges)
snerror = ("D_S(%)", float(segMismatch) / numEdges)
serror = ("D_S", segMismatch)
aerror = ("D_B", nlabelMismatch + elabelMismatch)
anerror = ("D_Bn(%)",0.0)
if numLabels > 0:
anerror = ("D_Bn(%)", float(nlabelMismatch + elabelMismatch)/numLabels)
# DEBUG:
# Delta E BASE CASE: for a single node, which is absent in the other
# file, set label and segment edge mismatches to 1 (in order
# to obtain 1.0 as the error metric, i.e. total error).
if len(self.nlabels.keys()) == 1 and \
(len(self.absentNodes) > 0 or \
len(lg2.absentNodes) > 0):
elabelMismatch = 1
segMismatch = 1
errorVal = 0.0
if numEdges > 0:
errorVal += math.sqrt(float(segMismatch) / numEdges) + \
math.sqrt(float(elabelMismatch) / numEdges)
if numNodes > 0:
errorVal += float(nlabelMismatch) / numNodes
errorVal = errorVal / 3.0
eerror = ("D_E(%)", errorVal)
#eerror = ("D_E(%)", \
# (float(nlabelMismatch) / numNodes +
# math.sqrt(float(segMismatch) / numEdges) +
# math.sqrt(float(elabelMismatch) / numEdges)) / 3.0)
# Compile metrics
metrics = metrics + [ cerror, serror, rerror, anerror,\
eerror, cnerror, snerror, rnerror, aerror, \
("nNodes",numNodes), ("nEdges", numEdges), \
("nSegRelEdges", nSegRelEdges), \
("dPairs",incorrectPairs),("segPairErrors",segPairErrors),
("nodeCorrect", numNodes - len(nodeError))]
metrics = metrics + scMetrics
return (metrics, nodeconflicts, edgeconflicts, segDiffs, correctSegs,\
segRelDiffs)
##################################
# Manipulation/'Mutation'
##################################
def separateTreeEdges(self):
"""Return a list of root nodes, and two lists of edges corresponding to
tree/forest edges, and the remaining edges."""
# First, obtain segments; perform extraction on edges over segments.
(segmentPrimitiveMap, primitiveSegmentMap, noparentSegments, \
segmentEdges) = self.segmentGraph()
# Collect parents and children for each node; identify root nodes.
# (NOTE: root nodes provided already as noparentSegments)
nodeParentMap = {}
nodeChildMap = {}
rootNodes = set(segmentPrimitiveMap.keys())
for (parent, child) in segmentEdges:
if not child in nodeParentMap.keys():
nodeParentMap[ child ] = [ parent ]
rootNodes.remove( child )
else:
nodeParentMap[ child ] += [ parent ]
if not parent in nodeChildMap.keys():
nodeChildMap[ parent ] = [ child ]
else:
nodeChildMap[ parent ] += [ child ]
# Separate non-tree edges, traversing from the root.
fringe = list(rootNodes)
# Filter non-tree edges.
nonTreeEdges = set([])
while len(fringe) > 0:
nextNode = fringe.pop(0)
# Skip leaf nodes.
if nextNode in nodeChildMap.keys():
# DEBUG: need to copy the list of children, to avoid
# missing child nodes as d.structures are updated.
children = copy.deepcopy(nodeChildMap[ nextNode ])
for child in children:
numChildParents = len( nodeParentMap[ child ] )
# Filter edges to children that have more than
# one parent (i.e. other than nextNode)
if numChildParents == 1:
# Child in the tree found, put on fringe.
fringe += [ child ]
else:
# Shift edge to non-tree status.
nonTreeEdges.add((nextNode, child))
nodeChildMap[ nextNode ].remove(child)
nodeParentMap[ child ].remove(nextNode)
# Generate the tree edges from remaining child relationships.
treeEdges = []
for node in nodeChildMap:
for child in nodeChildMap[ node ]:
treeEdges += [ (node, child) ]
return (list(rootNodes), treeEdges, list(nonTreeEdges))
def removeAbsent(self):
"""Remove any absent edges from both graphs, and empty the fields
recording empty objects."""
for absEdge in self.absentEdges:
del self.elabels[ absEdge ]
for absNode in self.absentNodes:
del self.nlabels[ absNode ]
self.absentNodes = set([])
self.absentEdges = set([])
def addAbsent(self, lg2):
"""Identify edges in other graph but not the current one."""
selfNodes = set(self.nlabels.keys())
lg2Nodes = set(lg2.nlabels.keys())
self.absentNodes = lg2Nodes.difference(selfNodes)
# WARN about absent nodes/edges; indicate that there is an error.
if len(self.absentNodes) > 0:
sys.stderr.write(' !! Inserting ABSENT nodes for:\n ' \
+ self.file + ' vs.\n ' + lg2.file + '\n ' \
+ str(sorted(list(self.absentNodes))) + '\n')
self.error = True
# Add "absent" nodes.
for missingNode in self.absentNodes:
self.nlabels[ missingNode ] = { 'ABSENT': 1.0 }
# Add edges for absent elements, to every node in
# the now-expanded node set.
# for missingNode in self.absentNodes:
# for node in self.nlabels.keys():
# # Do not create self-edges.
# if not missingNode == node:
# self.elabels[ ( missingNode, node) ] = { 'ABSENT' : 1.0 }
# self.absentEdges.add( (missingNode, node) )
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
def matchAbsent(self, lg2):
"""Add all missing primitives and edges between this graph and
the passed graph. **Modifies both the object and argument graph lg2."""
self.removeAbsent()
self.addAbsent(lg2)
lg2.removeAbsent()
lg2.addAbsent(self)
##################################
# Routines for missing/unlabeled
# edges.
##################################
# Returns NONE: modifies in-place.
def labelMissingEdges(self):
for node1 in self.nlabels.keys():
for node2 in self.nlabels.keys():
if not node1 == node2:
if not (node1, node2) in self.elabels.keys():
self.elabels[(node1, node2)] = {'_' : 1.0 }
# Returns NONE: modifies in-place.
def hideUnlabeledEdges(self):
"""Move all missing/unlabeled edges to the hiddenEdges field."""
# Move all edges labeled '_' to the hiddenEdges field.
for edge in self.elabels.keys():
if set( self.elabels[ edge ].keys() ) == \
set( [ '_' ] ):
self.hiddenEdges[ edge ] = self.elabels[ edge ]
del self.elabels[ edge ]
def restoreUnlabeledEdges(self):
"""Move all edges in the hiddenEdges field back to the set of
edges for the graph."""
for edge in self.hiddenEdges.keys():
self.elabels[ edge ] = self.hiddenEdges[ edge ]
del self.hiddenEdges[ edge ]
##################################
# Merging graphs
##################################
# RETURNS None (modifies 'self' in-place.)
def merge(self, lg2, ncombfn, ecombfn):
"""New node/edge labels are added from lg2 with common primitives. The
value for common node/edge labels updated using ncombfn and
ecombfn respectiveley: each function is applied to current values to
obtain the new value (i.e. v1' = fn(v1,v2))."""
# Deal with non-common primitives/nodes.
# DEBUG: make sure that all absent edges are treated as
# 'hard' decisions (i.e. label ('_',1.0))
self.matchAbsent(lg2)
self.labelMissingEdges()
# Merge node and edgelabels.
mergeMaps(self.nlabels, self.gweight, lg2.nlabels, lg2.gweight, \
ncombfn)
mergeMaps(self.elabels, self.gweight, lg2.elabels, lg2.gweight,\
ecombfn)
# RETURNS None: modifies in-place.
def addWeightedLabelValues(self,lg2):
"""Merge two graphs, adding the values for each node/edge label."""
def addValues( v1, w1, v2, w2 ):
return w1 * v1 + w2 * v2
self.merge(lg2, addValues, addValues)
# RETURNS None: modifies in-place.
def selectMaxLabels(self):
"""Filter for labels with maximum confidence. NOTE: this will
keep all maximum value labels found in each map, e.g. if two
classifications have the same likelihood for a node."""
for object in self.nlabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.nlabels[object].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.nlabels[ object ] = maxPairs
for edge in self.elabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.elabels[edge].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.elabels[ edge ] = maxPairs
# RETURNS NONE: modifies in-place.
def invertValues(self):
"""Substract all node and edge label values from 1.0, to
invert the values. Attempting to invert a value outside [0,1] will
set the error flag on the object."""
for node in self.nlabels.keys():
for label in self.nlabels[ node ]:
currentValue = self.nlabels[ node ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert node: ' \
+ node + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.nlabels[ node ][ label ] = 1.0 - currentValue
for edge in self.elabels.keys():
for label in self.elabels[ edge ]:
currentValue = self.elabels[ edge ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert edge: ' + \
str(edge) + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.elabels[ edge ][ label ] = 1.0 - currentValue
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
def subStructIterator(self, nodeNumbers):
""" return an iterator which gives all substructures with n nodes
n belonging to the list depths"""
if(isinstance(nodeNumbers, int)):
nodeNumbers = [nodeNumbers]
subStruct = []
#init the substruct with isolated nodes
for n in self.nlabels.keys():
subStruct.append(set([n]))
if 1 in nodeNumbers:
yield smallGraph.SmallGraph([(n, "".join(self.nlabels[n].keys()))], [])
#print(subStruct)
for d in range(2,max(nodeNumbers)+1):
#add one node to each substructure
newSubsS = set([])
newSubsL = []
for sub in subStruct:
#print (" with " + str(sub))
le = getEdgesToNeighbours(sub,self.elabels.keys())
for (f,to) in le:
#print (" Add? " + str(to))
new = sub.union([to])
lnew = list(new)
lnew.sort()
snew = ",".join(lnew)
#print (" Test:" + snew + " in " + str(newSubsS))
if(not snew in newSubsS):
newSubsS.add(snew)
newSubsL.append(new)
if d in nodeNumbers:
# struc = getEdgesBetweenThem(new, self.elabels.keys())
# sg1 = smallGraph.SmallGraph()
# for n in new:
# sg1.nodes[n] = "".join(self.nlabels[n].keys())
# for (a,b) in struc:
# sg1.edges[(a,b)] = "".join(self.elabels[(a,b)].keys())
yield self.getSubSmallGraph(new)
#print (" Added: " + str(new))
subStruct = newSubsL
def getSubSmallGraph(self, nodelist):
"""return the small graph with the primitives in nodelist and all edges
between them. The used label is the merged list of labels from nodes/edges"""
sg = smallGraph.SmallGraph()
for n in nodelist:
#sg.nodes[n] = "".join(self.nlabels[n].keys())
sg.nodes[n] = self.nlabels[n].keys()
for e in getEdgesBetweenThem(nodelist,self.elabels.keys()):
#sg.edges[e] = "".join(self.elabels[e].keys())
sg.edges[e] = self.elabels[e].keys()
return sg
#compare the substructure
def compareSubStruct(self, olg, depths):
"""return the list of couple of substructure which disagree
the substructure from self are used as references"""
for struc in olg.subStructIterator(depths):
sg1 = self.getSubSmallGraph(struc.nodes.keys())
if(not (struc == sg1)):
allerrors.append((struc,sg1))
return allerrors
def compareSegmentsStruct(self, lgGT,depths):
"""Compute the number of differing segments, and record disagreements
in a list.
The primitives in each subgraph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all identical incoming and outgoing edges.
If used for classification evaluation, the ground-truth should be lgGT.
The first key value of the matrix is the lgGT obj structure, which
gives the structure of the corresponding primitives which is the key
to get the error structure in self"""
(sp1, ps1, _, sre1) = self.segmentGraph()
(spGT, psGT, _, sreGT) = lgGT.segmentGraph()
#FIX : this this not the case in spare representation
segDiffs = set()
correctSegments = set()
# Make sure to skip primitives that were missing ('ABSENT'),
# as in that case the graphs disagree on all non-identical node
# pairs for this primitive, and captured in self.absentEdges.
if not 'ABSENT' in self.nlabels[primitive] and \
not 'ABSENT' in lgGT.nlabels[primitive]:
# Obtain sets of primitives sharing a segment for the current
# primitive for both graphs.
# Each of sp1/spGT are a map of ( {prim_set}, label ) pairs.
segPrimSet1 = sp1[ ps1[primitive] ][0]
segPrimSet2 = spGT[ psGT[primitive] ][0]
# Only create an entry where there are disagreements.
if segPrimSet1 != segPrimSet2:
segDiffs.add( ( psGT[primitive], ps1[primitive]) )
#print "add seg Diff because of set : " + str(( psGT[primitive], ps1[primitive]))
# DEBUG: don't record differences for a single node.
elif len(self.nlabels.keys()) > 1:
# If node was missing in this graph or the other, treat
# this graph as having a miss segment
# do not count the segment in graph with 1 primitive
segDiffs.add(( psGT[primitive], ps1[primitive]) )
#print "add ABSENT : " + str(( psGT[primitive], ps1[primitive]))
# now check if the labels are identical
for seg in correctSegments:
# Get label for the first primtives (all primitives have identical
# labels in a segment).
# DEBUG: use only the set of labels, not confidence values.
if (0,[]) != self.cmpNodes(self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys()):
segDiffs.add(( psGT[firstPrim], ps1[firstPrim]) )
#print "add segDiff because of label : " + str(( psGT[firstPrim], ps1[firstPrim])) + str((self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys()))
allSegWithErr = set([p for (p,_) in segDiffs])
# start to build the LG at the object level
# add nodes for objet with the labels from the first prim
lgObj = Lg()
for (sid,lprim) in spGT.iteritems():
lgObj.nlabels[sid] = lgGT.nlabels[list(lprim[0])[0]]
# Compute the specific 'segment-level' graph edges that disagree, at the
# level of primitive-pairs. This means that invalid segmentations may
# still have valid layouts in some cases.
# Add also the edges in the smallGraph
segEdgeErr = set()
for thisPair in sreGT.keys():
# TODO : check if it is sp1[thisPair[0]] instead of sp1[thisPair[0]][0]
thisParentIds = set(spGT[ thisPair[0] ][0])
thisChildIds = set(spGT[thisPair[1] ][0])
lgObj.elabels[thisPair] = lgGT.elabels[ (list(thisParentIds)[0], list(thisChildIds)[0])]
# A 'correct' edge has the same label between all primitives
# in the two segments.
# NOTE: we are not checking the consitency of label in each graph
# ie if all labels from thisParentIds to thisChildIds in self are
# the same
for parentId in thisParentIds:
for childId in thisChildIds:
# DEBUG: compare only label sets, not values.
if not (parentId, childId) in self.elabels.keys() or \
(0,[]) != self.cmpEdges(self.elabels[ (parentId, childId) ].keys(),lgGT.elabels[ (parentId, childId) ].keys()):
#print "add edge err : " + str((parentId, childId))
segEdgeErr.add(thisPair)
continue
#print "LG Obj : \n" + lgObj.csv()
listOfAllError = []
for smg in lgObj.subStructIterator(depths):
#if one segment is in the segment error set
showIt = False
if len(set(smg.nodes.keys()).intersection(allSegWithErr)) > 0:
#print "show because of allSegWithErr : " + str(smg)
showIt = True
for pair in smg.edges.keys():
if pair in segEdgeErr:
#print "show because of segEdgeErr : " + str(smg)
showIt = True
continue
if showIt:
#build the smg for the prim from lgGT
allPrim = []
for s in smg.nodes.keys():
#print allPrim
smgPrim1 = self.getSubSmallGraph(allPrim)
#build the smg for the prim from lgGT
smgPrimGT = lgGT.getSubSmallGraph(allPrim)
listOfAllError.append((smg,smgPrimGT,smgPrim1))
return listOfAllError
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
################################################################
# Utility functions
################################################################
def mergeLabelLists(llist1, weight1, llist2, weight2, combfn):
"""Combine values in two label lists according to the passed combfn
function, and passed weights for each label list."""
# Combine values for each label in lg2 already in self.
allLabels = set(llist1.items())\
.union(set(llist2.items()))
# have to test whether labels exist
# in one or both list.
for (label, value) in allLabels:
if label in llist1.keys() and \
label in llist2.keys():
llist1[ label ] = \
combfn( llist1[label], weight1,\
llist2[label], weight2 )
elif label in llist2.keys():
llist1[ label ] = \
weight2 * llist2[label]
else:
llist1[ label ] = \
weight1 * llist1[label]
def mergeMaps(map1, weight1, map2, weight2, combfn):
"""Combine values in two maps according to the passed combfn
function, and passed weights for each map."""
# Odds are good that there are built-in function for this
# operation.
objects1 = map1.keys()
objects2 = map2.keys()
allObjects = set(objects1).union(set(objects2))
for object in allObjects:
if object in objects1 and object in objects2:
# Combine values for each label in lg2 already in self.
mergeLabelLists(map1[object],weight1, map2[object], weight2, combfn )
# DEBUG: no relationship ('missing') edges should
# be taken as certain (value 1.0 * weight) where not explicit.
elif object in objects2:
# Use copy to avoid aliasing problems.
# Use appropriate weight to update value.
map1[ object ] = copy.deepcopy( map2[ object ] )
for (label, value) in map1[object].items():
map1[object][label] = weight2 * value
map1[object]['_'] = weight1
else:
# Only in current map: weight value appropriately.
for (label, value) in map1[object].items():
map1[object][label] = weight1 * value
map1[object]['_'] = weight2
def getEdgesToNeighbours(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
neigb = set([])
for (n1,n2) in edges:
if (n1 in nodes and not n2 in nodes):
neigb.add((n1,n2))
return neigb
def getEdgesBetweenThem(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
edg = set([])
for (n1,n2) in edges:
if (n1 in nodes and n2 in nodes):
edg.add((n1,n2))
return edg