Nantes Université

Skip to content
Extraits de code Groupes Projets
lg.py 46,8 ko
Newer Older
Richard Zanibbi's avatar
Richard Zanibbi a validé
################################################################
# lg.py - Bipartitite Graph Class
Richard Zanibbi's avatar
Richard Zanibbi a validé
#
# Author: R. Zanibbi, June 2012
# Copyright (c) 2012, Richard Zanibbi and Harold Mouchere
################################################################
import csv
import sys
import math
import copy
Richard Zanibbi's avatar
Richard Zanibbi a validé

class Lg(object):
	"""Class for bipartite graphs where the two node sets are identical, and
	multiple node and edge labels are permited. The graph and individual nodes
	and edges have associated values (e.g. weights/probabilities)."""

	# Define graph data elements ('data members' for an object in the class)
	__slots__ = ('file','gweight','nlabels','elabels','error','absentNodes',\
			'absentEdges','hiddenEdges', 'cmpNodes', 'cmpEdges')
Richard Zanibbi's avatar
Richard Zanibbi a validé

	##################################
	# Constructors (in __init__)
	##################################
	def __init__(self,*args): 
		"""Graph data is read from a CSV file or provided node and edge label
		dictionaries.  If invalid entries are found, the error flag is set to
		true, and graph input continues.  In .lg files, blank lines are
		ignored, and # may be used for comment lines in CSV graph files."""
		self.error = False
		self.gweight = 1.0
		self.nlabels = {}
		self.elabels = {}
		self.absentNodes = set([])
		self.absentEdges = set([])
		self.hiddenEdges = {}
		self.cmpNodes = compareTools.cmpNodes
		self.cmpEdges = compareTools.cmpEdges
Richard Zanibbi's avatar
Richard Zanibbi a validé

		fileName = None
		nodeLabels = {}
		edgeLabels = {}
Richard Zanibbi's avatar
Richard Zanibbi a validé
		if len(args) == 1:
			fileName = args[0]
			self.file = fileName # DEBUG: add filename for debugging purposes.
Richard Zanibbi's avatar
Richard Zanibbi a validé
			nodeLabels = args[0]
			edgeLabels = args[1]

		if fileName == None:
			# CONSTRUCTOR 1: try to read in node and edge labels.
			self.file = None
			# Automatically convert identifiers and labels to strings if needed.
			for nid in nodeLabels.keys():
				if not isinstance(nid, str):
					nid = str(nid)

				newdict = {}
				for label in nodeLabels[nid].keys():
					if not isinstance(nid, str):
						label = str(label)
					# Weights need to be floats.
					if not isinstance( nodeLabels[nid][label], float ):
						self.error = True
						sys.stderr.write('  !! Invalid weight for node ' + nid + ', label \"' \
								+ label +"\": " + str(nodeLabels[nid][label]) + "\n")
					newdict[ label ] = nodeLabels[nid][label]
				self.nlabels[nid] = newdict

			# WARNING: self-edges are not detected if edge labels used
			# for initialization.
			for eid in edgeLabels.keys():
				if not isinstance(eid[0], str) or not isinstance(eid[1],str):
					eid[0] = str(eid[0])
					eid[1] = str(eid[1])

				newdict = {}
				for label in edgeLabels[eid].keys():
					if not isinstance(label, str):
						label = str(label)
					if not isinstance( edgeLabels[eid][label], float ):
						self.error = True
						sys.stderr.write('  !! Invalid weight for edge ' + str(eid) + ', label \"' \
								+ label +"\": " + str(edgeLabels[eid][label]) + "\n")
					newdict[ label ] = edgeLabels[eid][label]

				self.elabels[eid] = newdict
		else:
			# CONSTRUCTOR 2: Read graph data from CSV file.
			MIN_NODE_ENTRY_LENGTH = 3
			MIN_EDGE_ENTRY_LENGTH = 4
			MIN_OBJECT_ENTRY_LENGTH = 5
			MIN_OBJECT_EDGE_ENTRY_LENGTH = 5
Richard Zanibbi's avatar
Richard Zanibbi a validé
			try:
				fileReader = csv.reader(open(fileName))
			except:
				# Create an empty graph if a file cannot be found.
				# Set the error flag.
				sys.stderr.write('  !! IO Error (cannot open): ' + fileName + '\n')
				self.error = True
				return
Richard Zanibbi's avatar
Richard Zanibbi a validé
			for row in fileReader:
				# Skip blank lines.
				if len(row) == 0 or len(row) == 1 and row[0].strip() == '':
					continue

				entryType = row[0].strip()
				if entryType == 'N':
					if len(row) < MIN_NODE_ENTRY_LENGTH:
						sys.stderr.write(' !! Invalid node entry length: ' \
								'\n\t' + str(row) + '\n')
						self.error = True
					else:
						nid = row[1].strip() # remove leading/trailing whitespace
						if nid in self.nlabels.keys():
							nlabelDict = self.nlabels[ nid ]
							nlabel = row[2].strip()
							if nlabel in nlabelDict:
								# Note possible error.
								sys.stderr.write(' !! Repeated node label entry ('\
										+ self.file + '): ' \
										+ '\n\t' + str(row) + '\n')
								self.error = True
							# Add (or replace) entry for the label.
							nlabelDict[ nlabel ] = float(row[3])
						else:
							# New primitive; create new dictionary for 
							# provided label (row[2]) and value (row[3])
							nid = row[1].strip()
							nlabel = row[2].strip()

							# Feb. 2013 - allow no weight to be provided.
							if len(row) > MIN_NODE_ENTRY_LENGTH:
								self.nlabels[ nid ] = { nlabel : float(row[3]) }
							else:
								self.nlabels[ nid ] = { nlabel : 1.0 }
	
				elif entryType == 'E':
					if len(row) < MIN_EDGE_ENTRY_LENGTH:
						sys.stderr.write(' !! Invalid edge entry length: ' \
								'\n\t' + str(row) + '\n')
						self.error = True
					else:
						primPair = ( row[1].strip(), row[2].strip() )
						if primPair[0] == primPair[1]:
							sys.stderr.write('  !! Invalid self-edge (' +
									self.file + '):\n\t' + str(row) + '\n')
							self.error = True
							nid = primPair[0]
							if nid in self.nlabels.keys():
								nlabelDict = self.nlabels[ nid ]
								nlabel = row[3].strip()
								if nlabel in nlabelDict:
									# Note possible error.
									sys.stderr.write(' !! Repeated node label entry ('\
										+ self.file + '): ' \
										+ '\n\t' + str(row) + '\n')
							# Add (or replace) entry for the label.
							nlabelDict[ nlabel ] = float(row[4])


						elif primPair in self.elabels.keys():
							elabelDict = self.elabels[ primPair ]
							elabel = row[3].strip()
							if elabel in elabelDict:
								# Note possible error.
								sys.stderr.write(' !! Repeated edge label entry (' \
										+ self.file + '):\n\t' + str(row) + '\n')
								self.error = True
							# Add (or replace) entry for the label.
							# Feb. 2013 - allow no weight.
							if len(row) > MIN_EDGE_ENTRY_LENGTH:
								elabelDict[ elabel ] = float(row[4])
							else:
								elabelDict[ elabel ] = 1.0
						else:
							# Add new edge label entry for the new edge label
							# as a dictionary.
							primPair = ( row[1].strip(), row[2].strip() )
							elabel = row[3].strip()
							
							self.elabels[ primPair ] = { elabel : float(row[4]) }
				elif entryType == 'O':
					if len(row) < MIN_OBJECT_ENTRY_LENGTH:
						sys.stderr.write(' !! Invalid object entry length: ' \
								'\n\t' + str(row) + '\n')
						self.error = True
					else:
						rawnodeList = row[4:] # get all other item as node id
						oid =  row[1].strip()
						nlabel =  row[2].strip()
						nValue =  float(row[3].strip())
						nodeList = []
						# add all nodes
						for n in rawnodeList:
							nid = n.strip()
							nodeList.append(nid)
							if nid in self.nlabels.keys():
								nlabelDict = self.nlabels[ nid ]
								if nlabel in nlabelDict:
									# Note possible error.
									sys.stderr.write(' !! Repeated node label entry '+str(nid)+'('\
											+ self.file + '): ' \
											+ '\n\t' + str(row) + '\n')
									self.error = True
								# Add (or replace) entry for the label.
								nlabelDict[ nlabel ] = nValue
							else:
								# New primitive; create new dictionary for 
								# provided label and value 	
								# Feb. 2013 - allow no weight to be provided.
								self.nlabels[ nid ] = { nlabel : nValue }
						#save the nodes of this object
						objectDict[oid] = nodeList
						#add all edges
						for nid1 in nodeList:
							#nid1 = n1.strip()
							for nid2 in nodeList:
								#nid2 = n2.strip()
								if nid1 != nid2:
									primPair = ( nid1, nid2 )
									elabel = nlabel#'*' #segmentation
									if primPair in self.elabels.keys():
										elabelDict = self.elabels[ primPair ]
										if elabel in elabelDict:
											# Note possible error.
											sys.stderr.write(' !! Repeated edge label entry (' \
													+ self.file + '):\n\t' + str(row) + '\n')
											self.error = True
										else:
											# Add (or replace) entry for the label.
											elabelDict[ elabel ] = nValue
									else:
										# Add new edge label entry for the new edge label
										# as a dictionary.
										self.elabels[ primPair ] = { elabel : nValue }

				elif entryType == 'EO':
					if len(row) < MIN_OBJECT_EDGE_ENTRY_LENGTH:
						sys.stderr.write(' !! Invalid object entry length: ' \
								'\n\t' + str(row) + '\n')
						self.error = True
					else:
						oid1 = row[1].strip()
						oid2 = row[2].strip()
						elabel = row[3].strip()
						eValue = float(row[4].strip())
						if not oid1 in objectDict:
							sys.stderr.write(' !! Invalid object id: ' + oid1+\
								'\n\t' + str(row) + '\n')
							self.error = True
						if not oid2 in objectDict:
							sys.stderr.write(' !! Invalid object id: ' + oid2+\
								'\n\t' + str(row) + '\n')
							self.error = True
						if not self.error:
							nodeList1 = objectDict[oid1] # get all other item as node id
							nodeList2 = objectDict[oid2] # get all other item as node id
Richard Zanibbi's avatar
Richard Zanibbi a validé

							for nid1 in nodeList1:
								for nid2 in nodeList2:
									if nid1 != nid2:
										primPair = ( nid1, nid2 )
										if primPair in self.elabels.keys():
											elabelDict = self.elabels[ primPair ]
											if elabel in elabelDict:
												# Note possible error.
												sys.stderr.write(' !! Repeated edge label entry (' \
														+ self.file + '):\n\t' + str(row) + '\n')
												self.error = True
											else:
												# Add (or replace) entry for the label.
												elabelDict[ elabel ] = eValue
										else:
											# Add new edge label entry for the new edge label
											# as dictionary.
											self.elabels[ primPair ] = { elabel : eValue }
									else:			
										sys.stderr.write('  !! Invalid self-edge (' +
										self.file + '):\n\t' + str(row) + '\n')
										self.error = True
Richard Zanibbi's avatar
Richard Zanibbi a validé
				# DEBUG: complaints about empty lines here...
				elif len(entryType.strip()) > 0 and entryType.strip()[0] == '#':
					# Ignore lines with comments.
					pass
				else:
					sys.stderr.write('  !! Invalid graph entry type (expect N/E/O/EO): ' \
Richard Zanibbi's avatar
Richard Zanibbi a validé
							+ str(row) + '\n')
					self.error = True
	
		# Add any implicit nodes in edges explicitly to the hash table
		# containing nodes. The 'nolabel' label is '_'.
		anonNode = False
		anodeList = []
		for elabel in self.elabels.keys():
			nid1 = elabel[0]
			nid2 = elabel[1]

			if not nid1 in self.nlabels.keys():
				self.nlabels[ nid1 ] = { '_' : 1.0 }
				anodeList = anodeList + [ nid1 ]
				anonNode = True
			if not nid2 in self.nlabels.keys():
				self.nlabels[ nid2 ] = { '_' : 1.0 }
				anodeList = anodeList + [ nid2 ]
				anonNode = True
		if anonNode:
			sys.stderr.write('  ** Anonymous labels created for:\n\t' \
				+ str(anodeList) + '\n')

	##################################
	# String, CSV output
	##################################
	def __str__(self):
		nlabelcount = 0
		elabelcount = 0
		for nid in self.nlabels.keys():
			nlabelcount = nlabelcount + len(self.nlabels[nid].keys())
		for eid in self.elabels.keys():
			elabelcount = elabelcount + len(self.elabels[eid].keys())

		return 'Nodes: ' + str(len(self.nlabels.keys())) \
				+ ' (labels: ' + str(nlabelcount) \
				+ ')   Edges: ' + str(len(self.elabels.keys())) \
				+ ' (labels: ' + str(elabelcount) \
				+ ')   Error: ' + str(self.error)

	def csv(self):
		"""Construct CSV data file representation as a string."""
		# NOTE: currently the graph value is not being stored...
		nlist = []
		elist = []
		for nkey in self.nlabels.keys():
			nodeLabels = self.nlabels[nkey]
			for nlabel in nodeLabels.keys():
				nstring = 'N,' + nkey + ',' + nlabel + ',' + \
						str(nodeLabels[nlabel]) + '\n'
				nlist = nlist + [ nstring ]

		for npair in self.elabels.keys():
			edgeLabels = self.elabels[npair]
			for elabel in edgeLabels.keys():
				estring = 'E,' + npair[0] + ',' + npair[1] + ',' + elabel + ',' + \
						str(edgeLabels[ elabel ]) + '\n'
				elist = elist + [ estring ]

		# Sort the node and edge strings lexicographically.
		# NOTE: this means that '10' precedes '2' in the sorted ordering
		nlist.sort()
		elist.sort() 
		sstring = ''
		for nstring in nlist:
			sstring = sstring + nstring
Richard Zanibbi's avatar
Richard Zanibbi a validé
		for estring in elist:
			sstring = sstring + estring
		
		return sstring

	##################################
	# Construct segment-based graph
	# for current graph state
	##################################
	def segmentGraph(self):
		"""Return dictionaries from segments to strokes, strokes to segments,
		segments without parents, and edges labeled as segment ('*')."""
		primitiveSegmentMap = {}
		segmentPrimitiveMap = {}
		#noparentSegments = []
Richard Zanibbi's avatar
Richard Zanibbi a validé
		segmentEdges = {}  # Edges between detected objects (segments)

		self.hideUnlabeledEdges()

		# Note: a segmentation edge in either direction merges a primitive pair.
		primSets = {}
		for node,labs in self.nlabels.items():
			primSets[node] = {}
			for l in labs:
				primSets[node][l] = set([node])
Richard Zanibbi's avatar
Richard Zanibbi a validé
		for (n1, n2) in self.elabels.keys():
			commonLabels = set(self.nlabels[n1].keys()).intersection(self.nlabels[n2].keys(),self.elabels[(n1,n2)].keys())
			for l in commonLabels:
				primSets[n1][l].add(n2)
				primSets[n2][l].add(n1)
		# NOTE: Segments can have multiple label
		# warning: a primitive can belong to several different
		# segments with different sets of primitives and different label.
		# but there is only one segment with the same label attached to each primitive
		# (not possible to represent several segmentation hypothesis of the same symbol)
Richard Zanibbi's avatar
Richard Zanibbi a validé
		i = 0
		segmentList = []
		rootSegments = set([])
		#for each label associated with each prim, there is a potential seg
		for primitive,segments in primSets.items():
			for lab in segments.keys():
				alreadySegmented = False
				for j in range(len(segmentList)):
					if segments[lab] == segmentList[j]["prim"]:
						if not primitive in primitiveSegmentMap:
							primitiveSegmentMap[ primitive ] = {}
						primitiveSegmentMap[ primitive ][lab] = 'seg' + str(j)
						alreadySegmented = True
						if lab not in segmentList[j]["label"]:
							segmentPrimitiveMap[  'seg' + str(j) ][1].append(lab)
							segmentList[j]["label"].add(lab)
						break

				if not alreadySegmented:
					# Add the new segment.
					newSegment = 'seg' + str(i)
					segmentList = segmentList + [ {"label":{lab},"prim":primSets[primitive][lab]} ]
					segmentPrimitiveMap[ newSegment ] = (segments[lab],[lab])
					if not primitive in primitiveSegmentMap:
							primitiveSegmentMap[ primitive ] = {}
					primitiveSegmentMap[ primitive ][lab] = newSegment
					rootSegments.add(newSegment)
					i += 1
Richard Zanibbi's avatar
Richard Zanibbi a validé

		# Identify 'root' objects/segments (i.e. with no incoming edges),
		# and edges between objects. **We skip segmentation edges.
		
		for (n1, n2),elabs in self.elabels.items():
Richard Zanibbi's avatar
Richard Zanibbi a validé
			segment1 = primitiveSegmentMap[n1]
			segment2 = primitiveSegmentMap[n2]
			#for all possible pair of segments with these two primitives, look for the effective relation labels
			possibleRelationLabels = set(elabs.keys()).difference(self.nlabels[n1].keys(),self.nlabels[n2].keys())
			if len(possibleRelationLabels) != 0:
				#for all pair of labels
				for l1,pset1 in segment1.items():
					for l2, pset2 in segment2.items():
						#if not in the same seg
						if pset1 != pset2:
							#look for the label which is common for all primitive pair in the two segments
							theRelationLab = possibleRelationLabels
							for p1 in primSets[n1][l1]:
								for p2 in primSets[n2][l2]:
									if(p1,p2) in self.elabels:
										theRelationLab &= self.elabels[(p1,p2)].keys()
									else:
										theRelationLab = set([]) # it should be a clique !
									if len(theRelationLab) == 0:
										break
								if len(theRelationLab) == 0:
									break
							# there is a common relation if theRelationLab is not empty
							if len(theRelationLab) != 0:
								#we can remove seg2 from the roots
								if pset2 in rootSegments:
									rootSegments.remove(pset2)
								#print (str((n1, n2))+ " => " + str(( pset1,  pset2)) + "  = " + str(theRelationLab))
								for label in theRelationLab:
									if ( pset1,  pset2) in segmentEdges:
										if label in segmentEdges[ ( pset1,  pset2) ]:
											# Sum weights for repeated labels
											segmentEdges[ ( pset1,  pset2)][label] += \
													self.elabels[(n1,n2)][label]
										else:
											# Add unaltered weights for new edge labels
											segmentEdges[ ( pset1,  pset2) ][label] = \
													self.elabels[(n1,n2)][label]
									else:
										segmentEdges[ ( pset1, pset2) ] = {}
										segmentEdges[ ( pset1, pset2) ][label] = \
												self.elabels[(n1,n2)][label]
Richard Zanibbi's avatar
Richard Zanibbi a validé

		self.restoreUnlabeledEdges()

		return (segmentPrimitiveMap, primitiveSegmentMap, list(rootSegments), \
				segmentEdges)


	##################################
	# Metrics and Graph Differences
	##################################
	def compareSegments(self, lg2):
		"""Compute the number of differing segments, and record disagreements.
		The primitives in each graph should be of the same number and names
		(identifiers). Nodes are merged that have identical (label,value)
		pairs on nodes and all incoming and outgoing edges."""
		(sp1, ps1, _, sre1) = self.segmentGraph()
		(sp2, ps2, _, sre2) = lg2.segmentGraph()
		#byValue = lambda pair: pair[1]  # define key for sort comparisons.
Richard Zanibbi's avatar
Richard Zanibbi a validé

		allNodes = set(ps1.keys())
		#FIX : this this not the case in spare representation 
Richard Zanibbi's avatar
Richard Zanibbi a validé
		assert allNodes == set(ps2.keys())
	
		edgeDiffCount = 0
		segDiffs = {}
		correctSegments = set([])
		correctSegmentsAndClass = set([])
		# list and count the edges errors which are due to segmentation errors
		# use cmpNodes to compare the labels of symbols
		# idea : build the sub graph with the current primitive as center and only 
Richard Zanibbi's avatar
Richard Zanibbi a validé
		for primitive in ps1.keys():
			# Make sure to skip primitives that were missing ('ABSENT'),
			# as in that case the graphs disagree on all non-identical node
			# pairs for this primitive, and captured in self.absentEdges.
			# if not 'ABSENT' in self.nlabels[primitive] and \
					# not 'ABSENT' in lg2.nlabels[primitive]:
				#the 2 sub graphs
				edgeFromP1 = {}
				edgeFromP2 = {}
				for (lab1,seg1) in ps1[primitive].items():
					for p in sp1[seg1][0]:
						if p != primitive:
							if p in edgeFromP1:
								edgeFromP1[p].append(lab1)
							else:
								edgeFromP1[p] = [lab1]
	
				for (lab2,seg2) in ps2[primitive].items():
					for p in sp2[seg2][0]:
						if p != primitive:
							if p in edgeFromP2:
								edgeFromP2[p].append(lab2)
							else:
								edgeFromP2[p] = [lab2]

				# Compute differences in edges labels with cmpNodes (as they are symbol labels)
				diff1 = set([])
				diff2 = set([])
				# first add differences for shared primitives
				commonPrim = set(edgeFromP1.keys()).intersection(edgeFromP2.keys())
				for p in commonPrim:
					(cost,diff) = self.cmpNodes(edgeFromP1[p], edgeFromP2[p])
					edgeDiffCount = edgeDiffCount + cost
					if cost > 0: #by someway, they disagree, thus add in both sets
						
						diff1.add(p)
						diff2.add(p)
				#then add differences for primitives which are not is the other set
				for p in (set(edgeFromP1.keys()) - commonPrim):
					(cost,diff) = self.cmpNodes(edgeFromP1[p], [])
					edgeDiffCount = edgeDiffCount + cost
					diff1.add(p)
					
				for p in (set(edgeFromP2.keys()) - commonPrim):
					(cost,diff) = self.cmpNodes(edgeFromP2[p], [])
					edgeDiffCount = edgeDiffCount + cost
					diff2.add(p)
					
Richard Zanibbi's avatar
Richard Zanibbi a validé

				# Only create an entry where there are disagreements.
Richard Zanibbi's avatar
Richard Zanibbi a validé
					segDiffs[primitive] = ( diff1, diff2 )
				
				# look for correct segments, ie primitive sets which are the same in both graphs
				#NOTE: even if this algorithm is not symmetric, the result is symmetric
				# print ("ps1="+str(ps1))
				# print ("ps2="+str(ps2))
				for (lab1,seg1) in ps1[primitive].items():
					#print ("pour "+ str((lab1,seg1)))
					if(seg1, lab1) not in correctSegmentsAndClass: # already found, no need to search
						for (lab2,seg2) in ps2[primitive].items():
							# print ("  > pour "+ str((lab2,seg2)))
							# print ("  >   " + str(sp1[seg1][0]) + "vs"+str(sp2[seg2][0]))
							if sp1[seg1][0] == sp2[seg2][0]:
								# print ("OK"+str((seg1, lab1)))
								correctSegments.add(seg1)
								(cost,_) = self.cmpNodes([lab1],[lab2]) # do not use spX[segX][1] because we can want to count each correct label as 1 even if there is an error in some labels in the same set
								if (cost == 0):
									correctSegmentsAndClass.add((seg1, lab1))
Richard Zanibbi's avatar
Richard Zanibbi a validé

			# DEBUG: don't record differences for a single node.
			# elif 'ABSENT' in self.nlabels[primitive] \
					# and len(self.nlabels.keys()) > 1:
Richard Zanibbi's avatar
Richard Zanibbi a validé
				# If node was missing in this graph, treat this graph as having
				# the opposite segmentation relationship of that in the other 
				# graph - in other words, total error, with all pairs incorrect.
				# DEBUG: We are trying to define the opposite of the edges
				# in the other graph in the case of an absent node.
				# allOtherNodes = allNodes.difference(set([primitive]))
				# ographSegPrimSet = set((sp2[ ps2[primitive] ])[0]).difference(set([primitive]))
				# ediff = allOtherNodes.difference(ographSegPrimSet)
				# edgeDiffCount = edgeDiffCount + len(ediff) + \
						# len(ographSegPrimSet)
				# segDiffs[primitive] = ( ediff, ographSegPrimSet )
				
				#version CROHME
				# ographSegPrimSet = set((sp2[ ps2[primitive] ])[0]).difference(set([primitive]))
				# ediff = set([primitive])
				# edgeDiffCount = edgeDiffCount + len(ographSegPrimSet)
				# segDiffs[primitive] = ( ediff, ographSegPrimSet )
Richard Zanibbi's avatar
Richard Zanibbi a validé

			# DEBUG: don't record differences for a single node.
			# elif len(self.nlabels.keys()) > 1:
Richard Zanibbi's avatar
Richard Zanibbi a validé
				# Similar, for case where node is missing in lg2.
				# allOtherNodes = allNodes.difference(set([primitive]))
				# graphSegPrimSet = set((sp1[ ps1[primitive] ])[0]).difference(set([primitive]))
				# ediff = allOtherNodes.difference(graphSegPrimSet)
				# segDiffs[primitive] = ( graphSegPrimSet, ediff )
				# edgeDiffCount = edgeDiffCount + len(ediff) + \
						# len(graphSegPrimSet)

				# version CROHME
				# graphSegPrimSet = set((sp1[ ps1[primitive] ])[0]).difference(set([primitive]))
				# ediff = set([primitive])
				# segDiffs[primitive] = ( graphSegPrimSet, ediff )
				# edgeDiffCount = edgeDiffCount + len(graphSegPrimSet)
Richard Zanibbi's avatar
Richard Zanibbi a validé

		# Compute metrics 
		metrics = [ ("SegError", len(sp2.keys()) - len(correctSegments) ) ]
		nbSegmClass = 0
		for (_,labs) in sp2.items():
			nbSegmClass += len(labs[1])
		metrics = metrics + [ ("ClassError", nbSegmClass - len(correctSegmentsAndClass)) ] 
Richard Zanibbi's avatar
Richard Zanibbi a validé
		metrics = metrics + [ ("nSeg", len(sp2.keys()) - len(lg2.absentNodes)) ] 
		metrics = metrics + [ ("detectedSeg", len(sp1.keys())) ]

		# Metrics for edges over segments (number and detected...)
		#metrics = metrics + [ ("nSegRelEdges", len(sre2.keys()) - len(lg2.absentEdges)) ]
		metrics = metrics + [ ("dSegRelEdges", len(sre1.keys())) ]

		# Compute the specific 'segment-level' graph edges that disagree, at the
		# level of primitive-pairs. This means that invalid segmentations may
		# still have valid layouts in some cases.
		segRelErrors = 0
		segRelEdgeDiffs = {}
		#segRelMatched = set([])
Richard Zanibbi's avatar
Richard Zanibbi a validé

		for thisPair in sre1.keys():
			thisParentIds = set(sp1[ thisPair[0] ][0])
			thisChildIds = set(sp1[thisPair[1] ][0])

			# A 'correct' edge has the same label between all primitives
			# in the two segments.
			error = False
			for parentId in thisParentIds:
				for childId in thisChildIds:
					# DEBUG: compare only label sets, not values.
					if not (parentId, childId) in lg2.elabels.keys() or \
						    not ((0,[]) == self.cmpEdges(self.elabels[ (parentId, childId) ].keys(),lg2.elabels[ (parentId, childId) ].keys())):
#					   not set(self.elabels[ (parentId, childId) ].keys())  == \
#							set(lg2.elabels[ (parentId, childId) ].keys()):
Richard Zanibbi's avatar
Richard Zanibbi a validé
						error = True
						segRelErrors += 1
						segRelEdgeDiffs[ thisPair ] = [ ('Error',1.0) ]
						continue
Richard Zanibbi's avatar
Richard Zanibbi a validé
		metrics = metrics + [ ("SegRelError", segRelErrors) ]

		return (edgeDiffCount, segDiffs, correctSegments, metrics, segRelEdgeDiffs)

	def compare(self, lg2):
		"""Returns: 1. a list of (metric,value) pairs,
		2. a list of (n1,n2) node disagreements, 3. (e1,e2) pairs
		for edge disagreements, 4. dictionary from primitives to
		disagreeing segment graph edges for (self, lg2). Node and 
		edge labels are compared using label sets without values, and
		*not* labels sorted by value."""
		metrics  = []
		nodeconflicts = []
		edgeconflicts = []
		#byValue = lambda pair: pair[1]  # define key for sort comparisons.
Richard Zanibbi's avatar
Richard Zanibbi a validé

		# FIX number of nodes as number in reference (lg2)
		# For evaluation relative to ground truth, this is more appropriate
		# than the (possibly expanded) number of targets after resolving
		# absent nodes in both directions. Does lead to risk of negative
		# accuracies (more errors than targets).
		# FIXED ( HM ) use the union of all nodes label instead of only lg2 ones
		#    it change the nlabelMismatch, nodeClassError and so D_C and all rates values
		# numNodes = len(lg2.nlabels.keys())
		allNodes = set(lg2.nlabels.keys()).union(self.nlabels.keys())
		numNodes = len(allNodes)
Richard Zanibbi's avatar
Richard Zanibbi a validé
		(sp2, ps2, _, sre2) = lg2.segmentGraph()
		nSegRelEdges = len(sre2)

		# Handle case of empty graphs, and missing primitives.
		# SIDE EFFECT: 'ABSENT' nodes and edges added to each graph.
		self.matchAbsent(lg2)

		# METRICS
		# Node and edge labels are considered as sets.
		#numNodes = len(self.nlabels.keys())
		nlabelMismatch = 0
		numEdges = numNodes * (numNodes - 1)  # No self-edges.
		numLabels = numNodes + numEdges
		elabelMismatch = 0

		# Mismatched nodes.
		nodeClassError = set()
		for nid in allNodes: #self.nlabels.keys():
			(cost,errL) = self.cmpNodes(self.nlabels[nid].keys(),lg2.nlabels[nid].keys())
			#if there is some error
			if cost > 0:
				# add mismatch
				nlabelMismatch = nlabelMismatch + cost
				# add errors in error list
				for (l1,l2) in errL:
					nodeconflicts = nodeconflicts + [ (nid, [ (l1, 1.0) ], [(l2, 1.0)] ) ]
				# add node in error list
Richard Zanibbi's avatar
Richard Zanibbi a validé
				nodeClassError = nodeClassError.union([nid])

		# Two-sided comparison of *label sets* (look from absent edges in both
		# graphs!) Must check whether edge exists; '_' represents a "NONE"
		# label (no edge).

		# Identify the set of nodes with disagreeing edges.
		# (RZ: Nov. 2012)
		nodeEdgeError = set()
		for (graph,oGraph) in [ (self,lg2), (lg2,self) ]:
			for npair in graph.elabels.keys():
				if not npair in oGraph.elabels \
						and (not graph.elabels[ npair ] == ['_']):
					(cost,errL) = self.cmpEdges(graph.elabels[ npair ].keys(),['_'])
					elabelMismatch = elabelMismatch + cost
Richard Zanibbi's avatar
Richard Zanibbi a validé

					(a,b) = npair
					# Record nodes in invalid edge
Richard Zanibbi's avatar
Richard Zanibbi a validé

					# DEBUG: Need to indicate correctly *which* graph has the
					# missing edge; this graph (1st) or the other (listed 2nd).
Richard Zanibbi's avatar
Richard Zanibbi a validé
					if graph == self:
						for (l1,l2) in errL:
							edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
Richard Zanibbi's avatar
Richard Zanibbi a validé
					else:
						for (l1,l2) in errL:
							edgeconflicts.append((npair, [ (l2, 1.0) ], [(l1, 1.0)] ) )
Richard Zanibbi's avatar
Richard Zanibbi a validé

					edgeconflicts.extend(conflictList)
Richard Zanibbi's avatar
Richard Zanibbi a validé
		# Obtain number of primitives with an error of any sort.
		nodeError = nodeClassError.union(nodeEdgeError)

		# One-sided comparison for common edges. Compared by cmpEdges
Richard Zanibbi's avatar
Richard Zanibbi a validé
		for npair in self.elabels.keys():
			if npair in lg2.elabels.keys():
				(cost,errL) = self.cmpEdges(self.elabels[npair].keys(),lg2.elabels[npair].keys())
				if cost > 0:
					elabelMismatch = elabelMismatch + cost
					(a,b) = npair
					# Record nodes in invalid edge
					nodeEdgeError.update([a,b])
					for (l1,l2) in errL:
						edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
Richard Zanibbi's avatar
Richard Zanibbi a validé

		# Now compute segmentation differences.
		(segMismatch, segDiffs, correctSegs, scMetrics, segRelDiffs) \
				= self.compareSegments(lg2)

		# UNDIRECTED/NODE PAIR METRICS
		# Compute number of invalid nodePairs
		badPairs = {}
		for ((n1, n2), _, _) in edgeconflicts:
			if not (n2, n1) in badPairs:
				badPairs[(n1, n2)] = True
		incorrectPairs = len(badPairs)

		# Compute number of mis-segmented node pairs.
Richard Zanibbi's avatar
Richard Zanibbi a validé
		for node in segDiffs.keys():
			for other in segDiffs[node][0]:
				if node != other and (other, node) not in badSegPairs:
					badSegPairs.add((node, other))
Richard Zanibbi's avatar
Richard Zanibbi a validé
			for other in segDiffs[node][1]:
				if  node != other and (other, node)not in badSegPairs:
					badSegPairs.add((node, other))
Richard Zanibbi's avatar
Richard Zanibbi a validé
		segPairErrors = len(badSegPairs)

		# Compute performance metrics; avoid divisions by 0.
		cerror = ("D_C", nlabelMismatch) 
		cnerror = ("D_C(%)",0.0)
		if numNodes > 0:
			cnerror = ("D_C(%)", float(nlabelMismatch) / numNodes)
		rerror = ("D_L", elabelMismatch) 
		rnerror = ("D_L(%)", 0.0)
		snerror = ("D_S(%)", 0.0)
		if numEdges > 0:
			rnerror = ("D_L(%)", float(elabelMismatch) / numEdges)
			snerror = ("D_S(%)", float(segMismatch) / numEdges)
		serror = ("D_S", segMismatch) 
		aerror = ("D_B", nlabelMismatch + elabelMismatch) 

		anerror = ("D_Bn(%)",0.0)
		if numLabels > 0:
			anerror = ("D_Bn(%)", float(nlabelMismatch + elabelMismatch)/numLabels)

		
		# DEBUG:
		# Delta E BASE CASE: for a single node, which is absent in the other
		# file, set label and segment edge mismatches to 1 (in order
		# to obtain 1.0 as the error metric, i.e. total error).
		if len(self.nlabels.keys()) == 1 and \
				(len(self.absentNodes) > 0 or \
				len(lg2.absentNodes) > 0):
			elabelMismatch = 1
			segMismatch = 1
		
		errorVal = 0.0
		if numEdges > 0:
			errorVal +=  math.sqrt(float(segMismatch) / numEdges) + \
					 math.sqrt(float(elabelMismatch) / numEdges)
		if numNodes > 0:
			errorVal += float(nlabelMismatch) / numNodes
		errorVal = errorVal / 3.0
		eerror  = ("D_E(%)", errorVal)
	
	#eerror = ("D_E(%)", \
	#				(float(nlabelMismatch) /  numNodes +
	#				 math.sqrt(float(segMismatch) / numEdges) +
	#				 math.sqrt(float(elabelMismatch) / numEdges)) / 3.0)

		# Compile metrics
		metrics = metrics + [ cerror,  serror, rerror, anerror,\
				eerror, cnerror, snerror, rnerror, aerror, \
				("nNodes",numNodes), ("nEdges", numEdges), \
				("nSegRelEdges", nSegRelEdges), \
				("dPairs",incorrectPairs),("segPairErrors",segPairErrors),
				("nodeCorrect", numNodes - len(nodeError))]
		metrics = metrics + scMetrics

		return (metrics, nodeconflicts, edgeconflicts, segDiffs, correctSegs,\
				segRelDiffs)
		
	##################################
	# Manipulation/'Mutation'
	##################################
	def separateTreeEdges(self):
		"""Return a list of root nodes, and two lists of edges corresponding to 
		tree/forest edges, and the remaining edges."""

		# First, obtain segments; perform extraction on edges over segments.
		(segmentPrimitiveMap, primitiveSegmentMap, noparentSegments, \
				segmentEdges) = self.segmentGraph()

		# Collect parents and children for each node; identify root nodes.
		# (NOTE: root nodes provided already as noparentSegments)
		nodeParentMap = {}
		nodeChildMap = {}
		rootNodes = set(segmentPrimitiveMap.keys())
		for (parent, child) in segmentEdges:
			if not child in nodeParentMap.keys():
				nodeParentMap[ child ] = [ parent ]
				rootNodes.remove( child )
			else:
				nodeParentMap[ child ] += [ parent ]

			if not parent in nodeChildMap.keys():
				nodeChildMap[ parent ] = [ child ]
			else:
				nodeChildMap[ parent ] += [ child ]

		# Separate non-tree edges, traversing from the root.
		fringe = list(rootNodes)

		# Filter non-tree edges.
		nonTreeEdges = set([])
		while len(fringe) > 0:
			nextNode = fringe.pop(0)

			# Skip leaf nodes.
			if nextNode in nodeChildMap.keys():
				# DEBUG: need to copy the list of children, to avoid
				# missing child nodes as d.structures are updated.
				children = copy.deepcopy(nodeChildMap[ nextNode ])
				for child in children:
					numChildParents = len( nodeParentMap[ child ] )

					# Filter edges to children that have more than
					# one parent (i.e. other than nextNode)
					if numChildParents == 1:
						# Child in the tree found, put on fringe.
						fringe += [ child ]
					else:
						# Shift edge to non-tree status.
						nonTreeEdges.add((nextNode, child))

						nodeChildMap[ nextNode ].remove(child)
						nodeParentMap[ child ].remove(nextNode)

		# Generate the tree edges from remaining child relationships.
		treeEdges = []
		for node in nodeChildMap:
			for child in nodeChildMap[ node ]:
				treeEdges += [ (node, child) ]

		return (list(rootNodes), treeEdges, list(nonTreeEdges))
					
	def removeAbsent(self):
		"""Remove any absent edges from both graphs, and empty the fields
		recording empty objects."""
		for absEdge in self.absentEdges:
			del self.elabels[ absEdge ]

		for absNode in self.absentNodes:
			del self.nlabels[ absNode ]
		
		self.absentNodes = set([])
		self.absentEdges = set([])

	def addAbsent(self, lg2):
		"""Identify edges in other graph but not the current one."""
		selfNodes = set(self.nlabels.keys())
		lg2Nodes = set(lg2.nlabels.keys())
		self.absentNodes = lg2Nodes.difference(selfNodes)

		# WARN about absent nodes/edges; indicate that there is an error.
		if len(self.absentNodes) > 0:
			sys.stderr.write('  !! Inserting ABSENT nodes for:\n      ' \
					+ self.file + ' vs.\n      ' + lg2.file + '\n      ' \
				+ str(sorted(list(self.absentNodes))) + '\n')
			self.error = True

		# Add "absent" nodes.
		for missingNode in self.absentNodes:
			self.nlabels[ missingNode ] = { 'ABSENT': 1.0 }

		# Add edges for absent elements, to every node in 
		# the now-expanded node set.
		# for missingNode in self.absentNodes:
			# for node in self.nlabels.keys():
				# # Do not create self-edges.
				# if not missingNode == node:
					# self.elabels[ ( missingNode, node) ] = { 'ABSENT' : 1.0 }
					# self.absentEdges.add( (missingNode, node) )
Richard Zanibbi's avatar
Richard Zanibbi a validé

	def matchAbsent(self, lg2):
		"""Add all missing primitives and edges between this graph and
		the passed graph. **Modifies both the object and argument graph lg2."""
		self.removeAbsent()
		self.addAbsent(lg2)

		lg2.removeAbsent()
		lg2.addAbsent(self)


	##################################
	# Routines for missing/unlabeled 
	# edges.
	##################################
	# Returns NONE: modifies in-place.
	def labelMissingEdges(self):
		for node1 in self.nlabels.keys():
			for node2 in self.nlabels.keys():
				if not node1 == node2:
					if not (node1, node2) in self.elabels.keys():
						self.elabels[(node1, node2)] = {'_' : 1.0 }

	# Returns NONE: modifies in-place.
	def hideUnlabeledEdges(self):
		"""Move all missing/unlabeled edges to the hiddenEdges field."""
		# Move all edges labeled '_' to the hiddenEdges field.
		for edge in self.elabels.keys():
			if set( self.elabels[ edge ].keys() ) == \
					set( [ '_' ] ):
				self.hiddenEdges[ edge ] = self.elabels[ edge ]
				del self.elabels[ edge ]

	def restoreUnlabeledEdges(self):
		"""Move all edges in the hiddenEdges field back to the set of
		edges for the graph."""
		for edge in self.hiddenEdges.keys():
			self.elabels[ edge ] = self.hiddenEdges[ edge ]
			del self.hiddenEdges[ edge ]

	##################################
	# Merging graphs
	##################################
	# RETURNS None (modifies 'self' in-place.)
	def merge(self, lg2, ncombfn, ecombfn):
		"""New node/edge labels are added from lg2 with common primitives. The
	   value for common node/edge labels updated using ncombfn and
	   ecombfn respectiveley: each function is applied to current values to
	   obtain the new value (i.e. v1' = fn(v1,v2))."""

		# Deal with non-common primitives/nodes.
		# DEBUG: make sure that all absent edges are treated as
		# 'hard' decisions (i.e. label ('_',1.0))
		self.matchAbsent(lg2)
		self.labelMissingEdges()

		# Merge node and edgelabels.
		mergeMaps(self.nlabels, self.gweight, lg2.nlabels, lg2.gweight, \
				ncombfn)
		mergeMaps(self.elabels, self.gweight, lg2.elabels, lg2.gweight,\
				ecombfn)

				
	# RETURNS None: modifies in-place.
	def addWeightedLabelValues(self,lg2):
		"""Merge two graphs, adding the values for each node/edge label."""
		def addValues( v1, w1, v2, w2 ):
			return w1 * v1 + w2 * v2
		self.merge(lg2, addValues, addValues)
	
	# RETURNS None: modifies in-place.
	def selectMaxLabels(self):
		"""Filter for labels with maximum confidence. NOTE: this will
		keep all maximum value labels found in each map, e.g. if two
		classifications have the same likelihood for a node."""
		for object in self.nlabels.keys():
			max = -1.0
			maxPairs = {}
			for (label, value) in self.nlabels[object].items():
				if value > max:
					max = value
					maxPairs = { label : value }
				elif value == max:
					maxPairs[label] = value

			self.nlabels[ object ] = maxPairs

		for edge in self.elabels.keys():
			max = -1.0
			maxPairs = {}
			for (label, value) in self.elabels[edge].items():
				if value > max:
					max = value
					maxPairs = { label : value }
				elif value == max:
					maxPairs[label] = value

			self.elabels[ edge ] = maxPairs
	
	# RETURNS NONE: modifies in-place.
	def invertValues(self):
		"""Substract all node and edge label values from 1.0, to 
		invert the values. Attempting to invert a value outside [0,1] will
		set the error flag on the object."""
		for node in self.nlabels.keys():
			for label in self.nlabels[ node ]:
				currentValue = self.nlabels[ node ][ label ] 
				if currentValue < 0.0 or currentValue > 1.0:
					sys.stderr.write('\n  !! Attempted to invert node: ' \
							+ node + ' label \"' \
							+ label + '\" with value ' + str(currentValue) + '\n')
					self.error = True
				else:
					self.nlabels[ node ][ label ] = 1.0 - currentValue

		for edge in self.elabels.keys():
			for label in self.elabels[ edge ]:
				currentValue = self.elabels[ edge ][ label ]
				if currentValue < 0.0 or currentValue > 1.0:
					sys.stderr.write('\n  !! Attempted to invert edge: ' + \
							str(edge) + ' label \"' \
							+ label + '\" with value ' + str(currentValue) + '\n')
					self.error = True
				else:
					self.elabels[ edge ][ label ] = 1.0 - currentValue

	def subStructIterator(self, nodeNumbers):
		""" return an iterator which gives all substructures with n nodes
		n belonging to the list depths"""
		if(isinstance(nodeNumbers, int)):
			nodeNumbers = [nodeNumbers]
		subStruct = []
		#init the substruct with isolated nodes
		for n in self.nlabels.keys():
			subStruct.append(set([n]))
			if 1 in nodeNumbers:
				yield smallGraph.SmallGraph([(n, "".join(self.nlabels[n].keys()))], [])
		#print(subStruct)
		for d in range(2,max(nodeNumbers)+1):
					#add one node to each substructure
			newSubsS = set([])
			newSubsL = []
			for sub in subStruct:
				#print ("  with " + str(sub))
				le = getEdgesToNeighbours(sub,self.elabels.keys())
				for (f,to) in le:
					#print ("    Add? " + str(to))
					new = sub.union([to])
					lnew = list(new)
					lnew.sort()
					snew = ",".join(lnew)
					#print ("    Test:" + snew + " in " + str(newSubsS))
					if(not snew in newSubsS):
						newSubsS.add(snew)
						newSubsL.append(new)
						if d in nodeNumbers:
#							struc = getEdgesBetweenThem(new, self.elabels.keys())
#							sg1 = smallGraph.SmallGraph()
#							for n in new:
#								sg1.nodes[n] = "".join(self.nlabels[n].keys())
#							for (a,b) in struc:
#								sg1.edges[(a,b)] = "".join(self.elabels[(a,b)].keys())
							yield self.getSubSmallGraph(new)
						#print ("   Added: " + str(new))
			subStruct = newSubsL
			
	def getSubSmallGraph(self, nodelist):
		"""return the small graph with the primitives in nodelist and all edges 
		between them. The used label is the merged list of labels from nodes/edges"""
		sg = smallGraph.SmallGraph()
		for n in nodelist:
			#sg.nodes[n] = "".join(self.nlabels[n].keys())
			sg.nodes[n] = self.nlabels[n].keys()
		for e in getEdgesBetweenThem(nodelist,self.elabels.keys()):
			#sg.edges[e] = "".join(self.elabels[e].keys())
			sg.edges[e] = self.elabels[e].keys()
		return sg
		
	#compare the substructure
	def compareSubStruct(self, olg, depths):
		"""return the list of couple of substructure which disagree
		the substructure from self are used as references"""
		for struc in olg.subStructIterator(depths):
				sg1 = self.getSubSmallGraph(struc.nodes.keys())
				if(not (struc == sg1)):
					allerrors.append((struc,sg1))
	def compareSegmentsStruct(self, lgGT,depths):
		"""Compute the number of differing segments, and record disagreements
		in a list. 
		The primitives in each subgraph should be of the same number and names
		(identifiers). Nodes are merged that have identical (label,value)
		pairs on nodes and all identical incoming and outgoing edges.
		If used for classification evaluation, the ground-truth should be lgGT.
		The first key value of the matrix is the lgGT obj structure, which
		gives the structure of the corresponding primitives which is the key
		to get the error structure in self"""
		(sp1, ps1, _, sre1) = self.segmentGraph()
		(spGT, psGT, _, sreGT) = lgGT.segmentGraph()
		allNodes = set(psGT.keys())
		#FIX : this this not the case in spare representation 
		assert allNodes == set(psGT.keys())
	
		segDiffs = set()
		correctSegments = set()
		for primitive in psGT.keys():
			# Make sure to skip primitives that were missing ('ABSENT'),
			# as in that case the graphs disagree on all non-identical node
			# pairs for this primitive, and captured in self.absentEdges.
			if not 'ABSENT' in self.nlabels[primitive] and \
					not 'ABSENT' in lgGT.nlabels[primitive]:
				# Obtain sets of primitives sharing a segment for the current
				# primitive for both graphs.
				# Each of sp1/spGT are a map of ( {prim_set}, label ) pairs.
				segPrimSet1 = sp1[ ps1[primitive] ][0]
				segPrimSet2 = spGT[ psGT[primitive] ][0]
				
				# Only create an entry where there are disagreements.
				if segPrimSet1 != segPrimSet2:
					segDiffs.add( ( psGT[primitive], ps1[primitive]) )
					#print "add seg Diff because of set : "  + str(( psGT[primitive], ps1[primitive]))
					correctSegments.add(psGT[primitive])
			# DEBUG: don't record differences for a single node.
			elif len(self.nlabels.keys()) > 1:
				# If node was missing in this graph or the other, treat 
				# this graph as having a miss segment
				# do not count the segment in graph with 1 primitive
				segDiffs.add(( psGT[primitive], ps1[primitive]) )
				#print "add ABSENT : " +  str(( psGT[primitive], ps1[primitive]))

		# now check if the labels are identical
		for seg in correctSegments:
			# Get label for the first primtives (all primitives have identical
			# labels in a segment).
			# DEBUG: use only the set of labels, not confidence values.
			firstPrim = list(spGT[seg][0])[0]
			if (0,[]) != self.cmpNodes(self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys()):
				segDiffs.add(( psGT[firstPrim], ps1[firstPrim]) )
				#print "add segDiff because of label : " +  str(( psGT[firstPrim], ps1[firstPrim])) + str((self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys()))
		allSegWithErr = set([p for (p,_) in segDiffs])
		# start to build the LG at the object level
		# add nodes for objet with the labels from the first prim
		lgObj = Lg()
		for (sid,lprim) in spGT.iteritems():
			lgObj.nlabels[sid] = lgGT.nlabels[list(lprim[0])[0]]

		# Compute the specific 'segment-level' graph edges that disagree, at the
		# level of primitive-pairs. This means that invalid segmentations may
		# still have valid layouts in some cases.
		# Add also the edges in the smallGraph
		segEdgeErr = set()
		for thisPair in sreGT.keys():
			# TODO : check if it is sp1[thisPair[0]] instead of sp1[thisPair[0]][0]
			thisParentIds = set(spGT[ thisPair[0] ][0])
			thisChildIds = set(spGT[thisPair[1] ][0])
			lgObj.elabels[thisPair] = lgGT.elabels[ (list(thisParentIds)[0], list(thisChildIds)[0])]
			# A 'correct' edge has the same label between all primitives
			# in the two segments.
			# NOTE: we are not checking the consitency of label in each graph
			#  ie if all labels from thisParentIds to thisChildIds in self are 
			# the same 
			for parentId in thisParentIds:
				for childId in thisChildIds:
					# DEBUG: compare only label sets, not values.
					if not (parentId, childId) in self.elabels.keys() or \
					   (0,[]) != self.cmpEdges(self.elabels[ (parentId, childId) ].keys(),lgGT.elabels[ (parentId, childId) ].keys()):
						#print "add edge err : " + str((parentId, childId))
						segEdgeErr.add(thisPair)
						continue
		#print "LG Obj : \n" + lgObj.csv()
		listOfAllError = []
		for smg in lgObj.subStructIterator(depths):
			#if one segment is in the segment error set
			showIt = False
			if len(set(smg.nodes.keys()).intersection(allSegWithErr)) > 0:
				#print "show because of allSegWithErr : " + str(smg)
				showIt = True
			for pair in smg.edges.keys():
				if pair in segEdgeErr:
					#print "show because of segEdgeErr : " + str(smg)
					showIt = True
					continue
			if showIt:
				#build the smg for the prim from lgGT
				allPrim = []
				for s in smg.nodes.keys():
					allPrim.extend(spGT[s][0])
				smgPrim1 = self.getSubSmallGraph(allPrim)
				#build the smg for the prim from lgGT 
				smgPrimGT = lgGT.getSubSmallGraph(allPrim)
				listOfAllError.append((smg,smgPrimGT,smgPrim1))
Richard Zanibbi's avatar
Richard Zanibbi a validé

################################################################
# Utility functions
################################################################
def mergeLabelLists(llist1, weight1, llist2, weight2, combfn):
	"""Combine values in two label lists according to the passed combfn
	function, and passed weights for each label list."""
	# Combine values for each label in lg2 already in self.
	allLabels = set(llist1.items())\
			.union(set(llist2.items()))
	# have to test whether labels exist
	# in one or both list.
	for (label, value) in allLabels:
		if label in llist1.keys() and \
				label in llist2.keys():
			llist1[ label ] = \
				combfn( llist1[label], weight1,\
						llist2[label], weight2 )
		elif label in llist2.keys():
			llist1[ label ] = \
				weight2 * llist2[label]
		else:
			llist1[ label ] = \
				weight1 * llist1[label]


def mergeMaps(map1, weight1, map2, weight2, combfn):
	"""Combine values in two maps according to the passed combfn
	function, and passed weights for each map."""
	# Odds are good that there are built-in function for this
	# operation.
	objects1 = map1.keys()
	objects2 = map2.keys()
	allObjects = set(objects1).union(set(objects2))
	for object in allObjects:
		if object in objects1 and object in objects2:
			# Combine values for each label in lg2 already in self.
			mergeLabelLists(map1[object],weight1, map2[object], weight2, combfn )			
		# DEBUG: no relationship ('missing') edges should
		# be taken as certain (value 1.0 * weight) where not explicit.
		elif object in objects2:
			# Use copy to avoid aliasing problems.
			# Use appropriate weight to update value.
			map1[ object ] = copy.deepcopy( map2[ object ] )
			for (label, value) in map1[object].items():
				map1[object][label] = weight2 * value
			map1[object]['_'] = weight1 
		else:
			# Only in current map: weight value appropriately.
			for (label, value) in map1[object].items():
				map1[object][label] = weight1 * value
			map1[object]['_'] = weight2 


def getEdgesToNeighbours(nodes,edges):
	"""return all edges which are coming from one of the nodes to out of these nodes"""
	neigb = set([])
	for (n1,n2) in edges:
		if (n1 in nodes and not n2 in nodes):
			neigb.add((n1,n2))
	return neigb

def getEdgesBetweenThem(nodes,edges):
	"""return all edges which are coming from one of the nodes to out of these nodes"""
	edg = set([])
	for (n1,n2) in edges:
		if (n1 in nodes and n2 in nodes):
			edg.add((n1,n2))
	return edg