Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
for (label, value) in self.nlabels[object].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.nlabels[ object ] = maxPairs
for edge in self.elabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.elabels[edge].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.elabels[ edge ] = maxPairs
# RETURNS NONE: modifies in-place.
def invertValues(self):
"""Substract all node and edge label values from 1.0, to
invert the values. Attempting to invert a value outside [0,1] will
set the error flag on the object."""
for node in self.nlabels.keys():
for label in self.nlabels[ node ]:
currentValue = self.nlabels[ node ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert node: ' \
+ node + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.nlabels[ node ][ label ] = 1.0 - currentValue
for edge in self.elabels.keys():
for label in self.elabels[ edge ]:
currentValue = self.elabels[ edge ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert edge: ' + \
str(edge) + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.elabels[ edge ][ label ] = 1.0 - currentValue
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
def subStructIterator(self, nodeNumbers):
""" return an iterator which gives all substructures with n nodes
n belonging to the list depths"""
if(isinstance(nodeNumbers, int)):
nodeNumbers = [nodeNumbers]
subStruct = []
#init the substruct with isolated nodes
for n in self.nlabels.keys():
subStruct.append(set([n]))
if 1 in nodeNumbers:
yield smallGraph.SmallGraph([(n, "".join(self.nlabels[n].keys()))], [])
#print(subStruct)
for d in range(2,max(nodeNumbers)+1):
#add one node to each substructure
newSubsS = set([])
newSubsL = []
for sub in subStruct:
#print (" with " + str(sub))
le = getEdgesToNeighbours(sub,self.elabels.keys())
for (f,to) in le:
#print (" Add? " + str(to))
new = sub.union([to])
lnew = list(new)
lnew.sort()
snew = ",".join(lnew)
#print (" Test:" + snew + " in " + str(newSubsS))
if(not snew in newSubsS):
newSubsS.add(snew)
newSubsL.append(new)
if d in nodeNumbers:
# struc = getEdgesBetweenThem(new, self.elabels.keys())
# sg1 = smallGraph.SmallGraph()
# for n in new:
# sg1.nodes[n] = "".join(self.nlabels[n].keys())
# for (a,b) in struc:
# sg1.edges[(a,b)] = "".join(self.elabels[(a,b)].keys())
yield self.getSubSmallGraph(new)
#print (" Added: " + str(new))
subStruct = newSubsL
def getSubSmallGraph(self, nodelist):
"""return the small graph with the primitives in nodelist and all edges
between them. The used label is the merged list of labels from nodes/edges"""
sg = smallGraph.SmallGraph()
for n in nodelist:
#sg.nodes[n] = "".join(self.nlabels[n].keys())
sg.nodes[n] = self.nlabels[n].keys()
for e in getEdgesBetweenThem(nodelist,self.elabels.keys()):
#sg.edges[e] = "".join(self.elabels[e].keys())
sg.edges[e] = self.elabels[e].keys()
return sg
#compare the substructure
def compareSubStruct(self, olg, depths):
"""return the list of couple of substructure which disagree
the substructure from self are used as references"""
for struc in olg.subStructIterator(depths):
sg1 = self.getSubSmallGraph(struc.nodes.keys())
if(not (struc == sg1)):
allerrors.append((struc,sg1))
return allerrors
def compareSegmentsStruct(self, lgGT,depths):
"""Compute the number of differing segments, and record disagreements
in a list.
The primitives in each subgraph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all identical incoming and outgoing edges.
If used for classification evaluation, the ground-truth should be lgGT.
The first key value of the matrix is the lgGT obj structure, which
gives the structure of the corresponding primitives which is the key
to get the error structure in self"""
(sp1, ps1, _, sre1) = self.segmentGraph()
(spGT, psGT, _, sreGT) = lgGT.segmentGraph()
#FIX : this this not the case in spare representation
segDiffs = set()
correctSegments = set()
# Make sure to skip primitives that were missing ('ABSENT'),
# as in that case the graphs disagree on all non-identical node
# pairs for this primitive, and captured in self.absentEdges.
if not 'ABSENT' in self.nlabels[primitive] and \
not 'ABSENT' in lgGT.nlabels[primitive]:
# Obtain sets of primitives sharing a segment for the current
# primitive for both graphs.
# Each of sp1/spGT are a map of ( {prim_set}, label ) pairs.
segPrimSet1 = sp1[ ps1[primitive] ][0]
segPrimSet2 = spGT[ psGT[primitive] ][0]
# Only create an entry where there are disagreements.
if segPrimSet1 != segPrimSet2:
segDiffs.add( ( psGT[primitive], ps1[primitive]) )
#print "add seg Diff because of set : " + str(( psGT[primitive], ps1[primitive]))
# DEBUG: don't record differences for a single node.
elif len(self.nlabels.keys()) > 1:
# If node was missing in this graph or the other, treat
# this graph as having a miss segment
# do not count the segment in graph with 1 primitive
segDiffs.add(( psGT[primitive], ps1[primitive]) )
#print "add ABSENT : " + str(( psGT[primitive], ps1[primitive]))
# now check if the labels are identical
for seg in correctSegments:
# Get label for the first primtives (all primitives have identical
# labels in a segment).
# DEBUG: use only the set of labels, not confidence values.
if (0,[]) != self.cmpNodes(self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys()):
segDiffs.add(( psGT[firstPrim], ps1[firstPrim]) )
#print "add segDiff because of label : " + str(( psGT[firstPrim], ps1[firstPrim])) + str((self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys()))
allSegWithErr = set([p for (p,_) in segDiffs])
# start to build the LG at the object level
# add nodes for objet with the labels from the first prim
lgObj = Lg()
for (sid,lprim) in spGT.iteritems():
lgObj.nlabels[sid] = lgGT.nlabels[list(lprim[0])[0]]
# Compute the specific 'segment-level' graph edges that disagree, at the
# level of primitive-pairs. This means that invalid segmentations may
# still have valid layouts in some cases.
# Add also the edges in the smallGraph
segEdgeErr = set()
for thisPair in sreGT.keys():
# TODO : check if it is sp1[thisPair[0]] instead of sp1[thisPair[0]][0]
thisParentIds = set(spGT[ thisPair[0] ][0])
thisChildIds = set(spGT[thisPair[1] ][0])
lgObj.elabels[thisPair] = lgGT.elabels[ (list(thisParentIds)[0], list(thisChildIds)[0])]
# A 'correct' edge has the same label between all primitives
# in the two segments.
# NOTE: we are not checking the consitency of label in each graph
# ie if all labels from thisParentIds to thisChildIds in self are
# the same
for parentId in thisParentIds:
for childId in thisChildIds:
# DEBUG: compare only label sets, not values.
if not (parentId, childId) in self.elabels.keys() or \
(0,[]) != self.cmpEdges(self.elabels[ (parentId, childId) ].keys(),lgGT.elabels[ (parentId, childId) ].keys()):
#print "add edge err : " + str((parentId, childId))
segEdgeErr.add(thisPair)
continue
#print "LG Obj : \n" + lgObj.csv()
listOfAllError = []
for smg in lgObj.subStructIterator(depths):
#if one segment is in the segment error set
showIt = False
if len(set(smg.nodes.keys()).intersection(allSegWithErr)) > 0:
#print "show because of allSegWithErr : " + str(smg)
showIt = True
for pair in smg.edges.keys():
if pair in segEdgeErr:
#print "show because of segEdgeErr : " + str(smg)
showIt = True
continue
if showIt:
#build the smg for the prim from lgGT
allPrim = []
for s in smg.nodes.keys():
#print allPrim
smgPrim1 = self.getSubSmallGraph(allPrim)
#build the smg for the prim from lgGT
smgPrimGT = lgGT.getSubSmallGraph(allPrim)
listOfAllError.append((smg,smgPrimGT,smgPrim1))
return listOfAllError
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
################################################################
# Utility functions
################################################################
def mergeLabelLists(llist1, weight1, llist2, weight2, combfn):
"""Combine values in two label lists according to the passed combfn
function, and passed weights for each label list."""
# Combine values for each label in lg2 already in self.
allLabels = set(llist1.items())\
.union(set(llist2.items()))
# have to test whether labels exist
# in one or both list.
for (label, value) in allLabels:
if label in llist1.keys() and \
label in llist2.keys():
llist1[ label ] = \
combfn( llist1[label], weight1,\
llist2[label], weight2 )
elif label in llist2.keys():
llist1[ label ] = \
weight2 * llist2[label]
else:
llist1[ label ] = \
weight1 * llist1[label]
def mergeMaps(map1, weight1, map2, weight2, combfn):
"""Combine values in two maps according to the passed combfn
function, and passed weights for each map."""
# Odds are good that there are built-in function for this
# operation.
objects1 = map1.keys()
objects2 = map2.keys()
allObjects = set(objects1).union(set(objects2))
for object in allObjects:
if object in objects1 and object in objects2:
# Combine values for each label in lg2 already in self.
mergeLabelLists(map1[object],weight1, map2[object], weight2, combfn )
# DEBUG: no relationship ('missing') edges should
# be taken as certain (value 1.0 * weight) where not explicit.
elif object in objects2:
# Use copy to avoid aliasing problems.
# Use appropriate weight to update value.
map1[ object ] = copy.deepcopy( map2[ object ] )
for (label, value) in map1[object].items():
map1[object][label] = weight2 * value
map1[object]['_'] = weight1
else:
# Only in current map: weight value appropriately.
for (label, value) in map1[object].items():
map1[object][label] = weight1 * value
map1[object]['_'] = weight2
def getEdgesToNeighbours(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
neigb = set([])
for (n1,n2) in edges:
if (n1 in nodes and not n2 in nodes):
neigb.add((n1,n2))
return neigb
def getEdgesBetweenThem(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
edg = set([])
for (n1,n2) in edges:
if (n1 in nodes and n2 in nodes):
edg.add((n1,n2))
return edg