Newer
Older
################################################################
# lg.py - Label Graph Class
# Authors: R. Zanibbi and H. Mouchere, 2012
# Copyright (c) 2012-2014 Richard Zanibbi and Harold Mouchere
################################################################
import csv
import sys
import math
import copy
import compareTools
import os
class Lg(object):
"""Class for bipartite graphs where the two node sets are identical, and
multiple node and edge labels are permited. The graph and individual nodes
and edges have associated values (e.g. weights/probabilities)."""
# Define graph data elements ('data members' for an object in the class)
__slots__ = ('file','gweight','nlabels','elabels','error','absentNodes',\
'absentEdges','hiddenEdges', 'cmpNodes', 'cmpEdges')
##################################
# Constructors (in __init__)
##################################
def __init__(self,*args):
"""Graph data is read from a CSV file or provided node and edge label
dictionaries. If invalid entries are found, the error flag is set to
true, and graph input continues. In .lg files, blank lines are
ignored, and # may be used for comment lines in CSV graph files."""
self.error = False
self.gweight = 1.0
self.nlabels = {}
self.elabels = {}
self.absentNodes = set([])
self.absentEdges = set([])
self.hiddenEdges = {}
self.cmpNodes = compareTools.cmpNodes
self.cmpEdges = compareTools.cmpEdges
validAsteriskEdges = set()
invalidAsteriskNodes = set()
if len(args) == 1:
fileName = args[0]
self.file = fileName # DEBUG: add filename for debugging purposes.
elif len(args) == 2:
nodeLabels = args[0]
edgeLabels = args[1]
if fileName == None:
# CONSTRUCTOR 1: try to read in node and edge labels.
self.file = None
# Automatically convert identifiers and labels to strings if needed.
for nid in list(nodeLabels):
if not isinstance(nid, str):
nid = str(nid)
newdict = {}
for label in list(nodeLabels[nid]):
# Weights need to be floats.
if not isinstance( nodeLabels[nid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for node ' + nid + ', label \"' \
+ label +"\": " + str(nodeLabels[nid][label]) + "\n")
newdict[ label ] = nodeLabels[nid][label]
self.nlabels[nid] = newdict
# WARNING: self-edges are not detected if edge labels used
# for initialization.
for eid in list(edgeLabels):
if not isinstance(eid[0], str) or not isinstance(eid[1],str):
eid[0] = str(eid[0])
eid[1] = str(eid[1])
newdict = {}
for label in list(edgeLabels[eid]):
if not isinstance(label, str):
label = str(label)
if not isinstance( edgeLabels[eid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for edge ' + str(eid) + ', label \"' \
+ label +"\": " + str(edgeLabels[eid][label]) + "\n")
newdict[ label ] = edgeLabels[eid][label]
self.elabels[eid] = newdict
else:
# CONSTRUCTOR 2: Read graph data from CSV file.
MIN_NODE_ENTRY_LENGTH = 3
MIN_EDGE_ENTRY_LENGTH = 4
MIN_OBJECT_ENTRY_LENGTH = 5
MIN_OBJECT_EDGE_ENTRY_LENGTH = 5
try:
fileReader = csv.reader(open(fileName))
except:
# Create an empty graph if a file cannot be found.
# Set the error flag.
sys.stderr.write(' !! IO Error (cannot open): ' + fileName + '\n')
self.error = True
return
objectDict = dict([])
for row in fileReader:
# Skip blank lines.
if len(row) == 0 or len(row) == 1 and row[0].strip() == '':
continue
entryType = row[0].strip()
if entryType == 'N':
if len(row) < MIN_NODE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid node entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
nid = row[1].strip() # remove leading/trailing whitespace
if nid in list(self.nlabels):
nlabelDict = self.nlabels[ nid ]
nlabel = row[2].strip()
# if nlabel in nlabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated node label entry ('\
# + self.file + '): ' \
# + '\n\t' + str(row) + '\n')
# self.error = True
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[3])
else:
# New primitive; create new dictionary for
# provided label (row[2]) and value (row[3])
nid = row[1].strip()
nlabel = row[2].strip()
# Feb. 2013 - allow no weight to be provided.
if len(row) > MIN_NODE_ENTRY_LENGTH:
self.nlabels[ nid ] = { nlabel : float(row[3]) }
else:
self.nlabels[ nid ] = { nlabel : 1.0 }
elif entryType == 'E':
if len(row) < MIN_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid edge entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
primPair = ( row[1].strip(), row[2].strip() )
#self to self edge = error
if primPair[0] == primPair[1]:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
nid = primPair[0]
if nid in list(self.nlabels):
nlabelDict = self.nlabels[ nid ]
nlabel = row[3].strip()
# if nlabel in nlabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated node label entry ('\
# + self.file + '): ' \
# + '\n\t' + str(row) + '\n')
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[4])
#an edge already existing, add a new label
elif primPair in list(self.elabels):
elabelDict = self.elabels[ primPair ]
elabel = row[3].strip()
# if elabel in elabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated edge label entry (' \
# + self.file + '):\n\t' + str(row) + '\n')
# self.error = True
if elabel == '*':
# if using old fashion segmentation label, convert it by finding the (only) node label
if primPair[0] in self.nlabels and primPair[1] in self.nlabels and \
self.nlabels[ primPair[0]] == self.nlabels[ primPair[1]]:
elabel = list(self.nlabels[ primPair[0]])[0]
validAsteriskEdges.add( primPair )
else:
sys.stderr.write(' !! * edge used with ambiguous node labels (' \
+ str(self.nlabels[ primPair[0]]) + ' vs. ' \
+ str(self.nlabels[ primtPair[1]]) + ') in ' \
+ self.file + '):\n\t' + ", ".join(row) + '\n')
# RZ: Oct. 14 - cheap and dirty correction.
elabel = 'MergeError'
self.nlabels[ primPair[0] ] = { elabel : 1.0 }
self.nlabels[ primPair[1] ] = { elabel : 1.0 }
self.error = True
invalidAsteriskNodes.add( primPair[0] )
invalidAsteriskNodes.add( primPair[1] )
# Add (or replace) entry for the label.
# Feb. 2013 - allow no weight.
if len(row) > MIN_EDGE_ENTRY_LENGTH:
elabelDict[ elabel ] = float(row[4])
else:
elabelDict[ elabel ] = 1.0
else:
# Add new edge label entry for the new edge label
# as a dictionary.
primPair = ( row[1].strip(), row[2].strip() )
elabel = row[3].strip()
if elabel == '*':
# if using old fashion segmentation label, convert it by finding the (only) node label
if primPair[0] in self.nlabels and primPair[1] in self.nlabels and \
self.nlabels[ primPair[0]] == self.nlabels[ primPair[1]]:
elabel = list(self.nlabels[ primPair[0]])[0]
validAsteriskEdges.add( primPair )
else:
sys.stderr.write(' !! * edge used with ambiguous node labels (' \
+ str(self.nlabels[ primPair[0]]) + ' vs. ' \
+ str(self.nlabels[ primPair[1]]) + ') in ' \
+ self.file + '):\n\t' + ", ".join(row) + '\n')
elabel = 'MergeError'
self.nlabels[ primPair[0] ] = { elabel : 1.0 }
self.nlabels[ primPair[1] ] = { elabel : 1.0 }
self.error = True
invalidAsteriskNodes.add( primPair[0] )
invalidAsteriskNodes.add( primPair[1] )
elif entryType == 'O':
if len(row) < MIN_OBJECT_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: '+str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
rawnodeList = row[4:] # get all other item as node id
oid = row[1].strip()
nlabel = row[2].strip()
nValue = float(row[3].strip())
nodeList = []
# add all nodes
for n in rawnodeList:
nid = n.strip()
nodeList.append(nid)
if nid in list(self.nlabels):
nlabelDict = self.nlabels[ nid ]
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = nValue
else:
# New primitive; create new dictionary for
# provided label and value
# Feb. 2013 - allow no weight to be provided.
self.nlabels[ nid ] = { nlabel : nValue }
#save the nodes of this object
objectDict[oid] = nodeList
#add all edges
for nid1 in nodeList:
#nid1 = n1.strip()
for nid2 in nodeList:
#nid2 = n2.strip()
if nid1 != nid2:
primPair = ( nid1, nid2 )
elabel = nlabel
if primPair in list(self.elabels):
elabelDict = self.elabels[ primPair ]
# Add (or replace) entry for the label.
elabelDict[ elabel ] = nValue
else:
# Add new edge label entry for the new edge label
# as a dictionary.
self.elabels[ primPair ] = { elabel : nValue }
elif entryType == 'R' or entryType == 'EO':
if len(row) < MIN_OBJECT_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
oid1 = row[1].strip()
oid2 = row[2].strip()
elabel = row[3].strip()
eValue = float(row[4].strip())
validRelationship = True
if not oid1 in objectDict:
sys.stderr.write(' !! Invalid object id: "' + oid1+\
'" - IGNORING relationship:\n\t' + str(row) + '\n')
self.error = True
validRelationship = False
if not oid2 in objectDict:
sys.stderr.write(' !! Invalid object id: "' + oid2+\
'" - IGNORING relationship:\n\t' + str(row) + '\n')
self.error = True
validRelationship = False
if validRelationship:
nodeList1 = objectDict[oid1] # get all other item as node id
nodeList2 = objectDict[oid2] # get all other item as node id
for nid1 in nodeList1:
for nid2 in nodeList2:
if nid1 != nid2:
primPair = ( nid1, nid2 )
if primPair in list(self.elabels):
elabelDict = self.elabels[ primPair ]
# Add (or replace) entry for the label.
elabelDict[ elabel ] = eValue
else:
# Add new edge label entry for the new edge label
# as dictionary.
self.elabels[ primPair ] = { elabel : eValue }
else:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
# DEBUG: complaints about empty lines here...
elif len(entryType.strip()) > 0 and entryType.strip()[0] == '#':
# Ignore lines with comments.
pass
else:
sys.stderr.write(' !! Invalid graph entry type (expected N, E, O, R or EO): ' \
+ str(row) + '\n')
self.error = True
# Add any implicit nodes in edges explicitly to the hash table
# containing nodes. The 'nolabel' label is '_'.
anonNode = False
anodeList = []
for elabel in list(self.elabels):
if not nid1 in list(self.nlabels):
self.nlabels[ nid1 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid1 ]
anonNode = True
if not nid2 in list(self.nlabels):
self.nlabels[ nid2 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid2 ]
anonNode = True
if anonNode:
sys.stderr.write(' ** Anonymous labels created for:\n\t' \
+ str(anodeList) + '\n')
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# RZ Oct. 2014: add invalid merge edges and node labels where missing.
# This catches when a valid * edge is connected to an invalid one,
# relabeling the edge.
invalidAsteriskNodeList = sorted( list(invalidAsteriskNodes) )
while len(invalidAsteriskNodeList) > 0:
# Remove last element from the list.
nextPrimId = invalidAsteriskNodeList.pop()
# Linear traversal for matches (a 'region growing' algorithm)
# Add a traversal each time a new connected edge is found.
# NOTE: this will not add edges missing in the input (e.g.
# if '*' is defined in one direction but not the other.
for (parent, child) in validAsteriskEdges:
otherId = None
if parent == nextPrimId:
otherId = child
if child == nextPrimId:
otherId = parent
if otherId != None:
if not otherId in invalidAsteriskNodes:
invalidAsteriskNodes.add( otherId )
invalidAsteriskNodeList.append( otherId )
self.nlabels[ otherId ] = { 'MergeError' : 1.0 }
self.elabels[ (parent, child) ] = { 'MergeError' : 1.0 }
##################################
# String, CSV output
##################################
def __str__(self):
nlabelcount = 0
elabelcount = 0
for nid in list(self.nlabels):
nlabelcount = nlabelcount + len(list(self.nlabels[nid]))
for eid in list(self.elabels):
elabelcount = elabelcount + len(list(self.elabels[eid]))
return 'Nodes: ' + str(len(list(self.nlabels))) \
+ ') Edges: ' + str(len(list(self.elabels))) \
+ ' (labels: ' + str(elabelcount) \
+ ') Error: ' + str(self.error)
def csvObject(self):
"""Construct CSV data file using object-relationship format. Currently
weight values are only placeholders (i.e. 1.0 is always used)."""
outputString = ""
(segmentPrimitiveMap, primitiveSegmentMap, rootSegments, \
segmentEdges) = self.segmentGraph()
# Write the file name.
outputString += "# " + os.path.split(self.file)[1]
outputString += "\n\n"
# Write number of objects and format information.
# Output object information.
outputString += "# " + str(len(list(segmentPrimitiveMap))) + " Objects"
outputString += "\n"
outputString += "# FORMAT: O, Object ID, Label, Weight, [ Primitive ID List ]"
outputString += "\n"
for objectId in sorted( list(segmentPrimitiveMap) ):
for label in sorted(segmentPrimitiveMap[objectId][1]):
outputString += "O, " + objectId + ", " + label + ", 1.0"
for primitiveId in sorted( segmentPrimitiveMap[ objectId ][ 0 ] ):
outputString += ", " + primitiveId
outputString += "\n"
# Write number of relationships and format information.
# Write relationship information.
outputString += "\n"
outputString += "# " + str( len(list(segmentEdges)) ) + " Relationships (Pairs of Objects)"
outputString += "\n"
outputString += "# FORMAT: R, Object ID (parent), Object ID (child), Label, Weight"
outputString += "\n"
for (parentObj, childObj) in sorted( list(segmentEdges) ):
for relationship in sorted( list(segmentEdges[ (parentObj, childObj) ]) ):
outputString += "R, " + parentObj + ", " + childObj + ", "
outputString += relationship + ", 1.0"
outputString += "\n"
return outputString
def csv(self):
"""Construct CSV data file representation as a string."""
# NOTE: currently the graph value is not being stored...
sstring = ''
for nkey in list(self.nlabels):
for nlabel in list(nodeLabels):
nstring = 'N,' + nkey + ',' + nlabel + ',' + \
str(nodeLabels[nlabel]) + '\n'
nlist = nlist + [ nstring ]
for npair in list(self.elabels):
for elabel in list(edgeLabels):
estring = 'E,' + npair[0] + ',' + npair[1] + ',' + elabel + ',' + \
str(edgeLabels[ elabel ]) + '\n'
elist = elist + [ estring ]
# Sort the node and edge strings lexicographically.
# NOTE: this means that '10' precedes '2' in the sorted ordering
nlist.sort()
elist.sort()
sstring += '# ' + os.path.split(self.file)[1] + '\n\n'
sstring += '# ' + str(len(nlist)) + ' Nodes\n'
sstring += "# FORMAT: N, Primitive ID, Label, Weight\n"
sstring += "\n"
sstring += '# ' + str(len(elist)) + ' Edges\n'
sstring += '# FORMAT: E, Primitive ID (parent), Primitive ID (child), Label, Weight\n'
for estring in elist:
sstring = sstring + estring
return sstring
##################################
# Construct segment-based graph
# for current graph state
##################################
def segmentGraph(self):
"""Return dictionaries from segments to strokes, strokes to segments,
segments without parents, and edges labeled as segment (w. symbol label)."""
#noparentSegments = []
segmentEdges = {} # Edges between detected objects (segments)
self.hideUnlabeledEdges()
# Note: a segmentation edge in either direction merges a primitive pair.
primSets = {}
for node,labs in self.nlabels.items():
primSets[node] = {}
for l in labs:
(cost,_)=self.cmpNodes([l],[])
if(cost > 0):
primSets[node][l] = set([node])
#if len(primSets[node]) == 0:
# primSets[node]['_'] = set([node]) #at least one empty label
for (n1, n2) in list(self.elabels):
commonLabels = set(list(self.nlabels[n1])).intersection(list(self.nlabels[n2]),list(self.elabels[(n1,n2)]))
for l in commonLabels:
#check if this label is interesting or not => compare to 'nothing', if there is not error, it means it is not interesting
(cost,_)=self.cmpNodes([l],[])
if(cost > 0):
primSets[n1][l].add(n2)
primSets[n2][l].add(n1)
# NOTE: Segments can have multiple labels
# A primitive can belong to several different
# segments with different sets of primitives with different labels.
# but there is only one segment with the same label attached to each primitive.
# For each label associated with each primitive, there is a possible object/segment
for primitive,segments in primSets.items():
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
for lab in list(segments):
alreadySegmented = False
for j in range(len(segmentList)):
if segments[lab] == segmentList[j]["prim"]:
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
primitiveSegmentMap[ primitive ][lab] = 'Obj' + str(j)
alreadySegmented = True
if lab not in segmentList[j]["label"]:
segmentPrimitiveMap[ 'Obj' + str(j) ][1].append(lab)
segmentList[j]["label"].add(lab)
break
if not alreadySegmented:
# Add the new segment.
newSegment = 'Obj' + str(i)
segmentList = segmentList + [ {"label":{lab},"prim":primSets[primitive][lab]} ]
segmentPrimitiveMap[ newSegment ] = (segments[lab],[lab])
primitiveSegmentMap[ primitive ][lab] = newSegment
rootSegments.add(newSegment)
i += 1
# Identify 'root' objects/segments (i.e. with no incoming edges),
# and edges between objects. **We skip segmentation edges.
for (n1, n2), elabs in self.elabels.items():
segment2 = primitiveSegmentMap[n2]
#for all possible pair of segments with these two primitives, look for the effective relation labels
possibleRelationLabels = set(list(elabs)).difference(list(self.nlabels[n1]),list(self.nlabels[n2]))
if len(possibleRelationLabels) != 0:
#for all pair of labels
for l1,pset1 in segment1.items():
for l2, pset2 in segment2.items():
#if not in the same seg
if pset1 != pset2:
#look for the label which is common for all primitive pair in the two segments
theRelationLab = possibleRelationLabels
for p1 in primSets[n1][l1]:
for p2 in primSets[n2][l2]:
if(p1,p2) in self.elabels:
theRelationLab &= set(list(self.elabels[(p1,p2)]))
else:
theRelationLab = set([]) # it should be a clique !
if len(theRelationLab) == 0:
break
if len(theRelationLab) == 0:
break
# there is a common relation if theRelationLab is not empty
if len(theRelationLab) != 0:
#we can remove seg2 from the roots
if pset2 in rootSegments:
rootSegments.remove(pset2)
#print (str((n1, n2))+ " => " + str(( pset1, pset2)) + " = " + str(theRelationLab))
for label in theRelationLab:
#check if this label is interesting or not => compare to 'nothing', if there is not error, it means it is not interesting
(cost,_)=self.cmpNodes([label],[])
if(cost > 0):
if ( pset1, pset2) in segmentEdges:
if label in segmentEdges[ ( pset1, pset2) ]:
# Sum weights for repeated labels
segmentEdges[ ( pset1, pset2)][label] += \
self.elabels[(n1,n2)][label]
else:
# Add unaltered weights for new edge labels
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
segmentEdges[ ( pset1, pset2) ] = {}
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
self.restoreUnlabeledEdges()
return (segmentPrimitiveMap, primitiveSegmentMap, list(rootSegments), \
segmentEdges)
##################################
# Metrics and Graph Differences
##################################
def compareSegments(self, lg2):
"""Compute the number of differing segments, and record disagreements.
The primitives in each graph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all incoming and outgoing edges."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(sp2, ps2, _, sre2) = lg2.segmentGraph()
allNodes = set(list(ps1))
assert allNodes == set(list(ps2))
edgeDiffClassCount = 0
correctSegments = set([])
correctSegmentsAndClass = set([])
undirDiffClassSet = set([])
# List and count errors due to segmentation.
# Use cmpNodes to compare the labels of symbols.
# Idea : build the sub graph with the current primitive as center and only
for primitive in list(ps1):
edgeFromP1 = {}
edgeFromP2 = {}
for (lab1,seg1) in ps1[primitive].items():
for p in sp1[seg1][0]:
# DEBUG (RZ): this is producing a primitive edge-level count:
# do not count segment edges that are undefined (e.g. in one direction,
# but not the other)
if p != primitive and (p,primitive) in list(self.elabels) and \
lab1 in list(self.elabels[ (p,primitive) ]):
if p in edgeFromP1:
edgeFromP1[p].append(lab1)
else:
edgeFromP1[p] = [lab1]
for (lab2,seg2) in ps2[primitive].items():
for p in sp2[seg2][0]:
# DEBUG (RZ) - see DEBUG comment above.
if p != primitive and (p,primitive) in list(lg2.elabels) and \
lab2 in list(lg2.elabels[ (p, primitive) ]):
if p in edgeFromP2:
edgeFromP2[p].append(lab2)
else:
edgeFromP2[p] = [lab2]
# Compute differences in edge labels with cmpNodes (as they are symbol labels)
diff1 = set([])
diff2 = set([])
# first add differences for shared primitives
commonPrim = set(list(edgeFromP1)).intersection(list(edgeFromP2))
for p in commonPrim:
(cost,diff) = self.cmpNodes(edgeFromP1[p], edgeFromP2[p])
edgeDiffCount = edgeDiffCount + cost
# RZ June 2015: Record edges that are specifically valid merges with disagreeing labels.
# Also record sets of undirected edges that disagree.
for (l1,l2) in diff:
if l1 in list(self.nlabels[p]) and l2 in list(lg2.nlabels[p]):
edgeDiffClassCount += 1
# RZ: we do not have a *segmentation* difference if corresponding segm.
# edges have a label.
elif cost > 0:
diff1.add(p)
diff2.add(p)
if not (p, primitive) in undirDiffClassSet and not (primitive, p) in undirDiffClassSet:
undirDiffClassSet.add( (primitive, p) )
#then add differences for primitives which are not in the other set
for p in (set(list(edgeFromP1)) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP1[p], [])
edgeDiffCount = edgeDiffCount + cost
diff1.add(p)
for p in (set(list(edgeFromP2)) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP2[p], [])
edgeDiffCount = edgeDiffCount + cost
diff2.add(p)
# Only create an entry where there are disagreements.
if len(diff1) + len(diff2) > 0:
segDiffs[primitive] = ( diff1, diff2 )
# RZ: Oct. 2014 - replacing method used to evaluate segmentation. Also
# add checks for segments in the target being disjoint.
#
# Objects are defined by a set of primitives, plus a label.
# NOTE: This currently will support mutliple labels, but will lead to invalid
# "Class/Det" values in 00_Summary.txt if there are multiple labels.
targets = {}
# RZ: Add mapping from primitive list to object ids for direct lookup.
targetObjIds = {}
matchedTargets = set()
for ObjID in list(sp2):
# Skip absent nodes - they are not valid targets.
if 'ABSENT' not in sp2[ ObjID ][ 1 ]:
# Convert primitive set to a sorted tuple list.
primitiveTupleList = tuple( sorted( list( sp2[ ObjID ][ 0 ] ) ) )
# Store target label in targets dict, matches in matchedTargets dict (false init.)
targets[ primitiveTupleList ] = sp2[ ObjID][1]
targetObjIds[ primitiveTupleList ] = ObjID
# Look for matches.
# Do *not* allow a primitive set to be matched more than once.
for ObjID in list(sp1):
# HACK (RZ): DEBUG - was not checking whether matched objects were
# missing before absent nodes were added.
if 'ABSENT' in sp1[ ObjID ][ 1 ]:
continue
primitiveTupleList = tuple( sorted( list(sp1[ObjID][ 0 ] )))
if primitiveTupleList in list(targets) \
and not primitiveTupleList in matchedTargets:
matchedTargets.add( primitiveTupleList )
correctSegments.add( ObjID )
# Obtain matching labels. Create list of correct (segmentId, label) pairs
# for *all* matching labels.
# DEBUG: empty lists were being matched! Added test for empty matches.
# WARNING: Only guaranteed to work for single labels.
outputLabels = set(sp1[ ObjID ][ 1 ])
matchingLabels = list( outputLabels.intersection( targets[ primitiveTupleList ] ) )
if len(matchingLabels) > 0:
ObjIDRepeats = [ObjID] * len(matchingLabels)
correctSegmentsAndClass.add( tuple( zip(ObjIDRepeats, list(matchingLabels))))
# Compute total number of object classifications (recognition targets)
nbSegmClass = 0
for (_,labs) in sp2.items():
nbSegmClass += len(labs[1])
# Compute the specific 'object-level' graph edges that disagree, at the
# level of primitive-pairs.
correctSegRels = 0
correctSegRelLocations = 0
primRelEdgeDiffs = {}
# Iterate over object relationships in the output graph.
for thisPair in list(sre1):
misLabeled = False
falsePositive = False
thisParentIds = set(sp1[ thisPair[0] ][0])
thisChildIds = set(sp1[thisPair[1] ][0])
# RZ (June 2015): Obtain names for correct segments in target graph (lg2)
primitiveTupleListParent = tuple( sorted( list( thisParentIds )))
primitiveTupleListChild = tuple( sorted( list ( thisChildIds )))
targetObjNameParent = None
targetObjNameChild = None
if primitiveTupleListParent in list(targetObjIds):
targetObjNameParent = targetObjIds[ primitiveTupleListParent ]
if primitiveTupleListChild in list(targetObjIds):
targetObjNameChild = targetObjIds[ primitiveTupleListChild ]
# Check whether the objects are correctly segmented by their object identifiers
if not ( thisPair[0] in correctSegments and thisPair[1] in correctSegments):
# Avoid counting mis-segmented objects as having valid relationships
falsePositive = True
elif not ( targetObjNameParent, targetObjNameChild ) in list(sre2):
# Check that there is an edge between these objects in the target graph.
falsePositive = True
else:
# RZ (June, 2015): Compare labels directly on relation edges.
# WARNING: This checks that *all* labels are identical. Fine for single labels.
if not sorted( list(sre1[ thisPair ]) ) == \
sorted( list(sre2[ ( targetObjNameParent, targetObjNameChild )]) ):
misLabeled = True
# NOTE: assumes single labels on primitives.
# primRelEdgeDiffs records which object pairs have incorrect labels.
if falsePositive or misLabeled:
self.error = True
segRelErrors += 1
primRelEdgeDiffs[ thisPair ] = [ ('Error',1.0) ]
else:
correctSegRels += 1
# Count correct relationship structures/locations.
if not falsePositive:
correctSegRelLocations += 1
# Compute object counts *without* inserted absent nodes.
lg2.removeAbsent()
self.removeAbsent()
(sp2orig, ps2orig, _, sre2orig) = lg2.segmentGraph()
(sp1orig, ps1orig, _, sre1orig) = self.segmentGraph()
nLg2Objs = len(list(sp2orig))
nLg1Objs = len(list(sp1orig))
# For input file, need to compare against all objects after including
# missing/additional absent nodes and edges.
nLg1ObjsWithAbsent = len(list(sp1))
lg2.addAbsent(self)
self.addAbsent(lg2)
# RZ (Oct. 2014) Adding indicator variables for different correctness scenarios.
hasCorrectSegments = 1 if len(correctSegments) == nLg2Objs and \
len(correctSegments) == nLg1ObjsWithAbsent else 0
hasCorrectSegmentsAndLabels = 1 if len(correctSegmentsAndClass) == nLg2Objs and \
len(correctSegmentsAndClass) == nLg1ObjsWithAbsent else 0
hasCorrectRelationLocations = 1 if correctSegRelLocations == len(list(sre1)) and \
correctSegRelLocations == len(list(sre2)) else 0
hasCorrectRelationsAndLabels = 1 if correctSegRels == len(list(sre1)) and \
correctSegRels == len(list(sre2)) else 0
hasCorrectStructure = hasCorrectRelationLocations and hasCorrectSegments
# Compile vector of (name, value) metric pairs.
metrics = [
("edgeDiffClassCount", edgeDiffClassCount),
("undirDiffClassCount", len(undirDiffClassSet)),
("nSeg", nLg2Objs),
("detectedSeg", nLg1Objs),
("dSegRelEdges", len(list(sre1))),
("CorrectSegments", len(correctSegments)),
("CorrectSegmentsAndClass", len(correctSegmentsAndClass)),
("ClassError", nbSegmClass - len(correctSegmentsAndClass)),
("CorrectSegRels",correctSegRels),
("CorrectSegRelLocations",correctSegRelLocations),
("SegRelErrors", segRelErrors),
("hasCorrectSegments", hasCorrectSegments),
("hasCorrectSegLab", hasCorrectSegmentsAndLabels),
("hasCorrectRelationLocations", hasCorrectRelationLocations),
("hasCorrectRelLab", hasCorrectRelationsAndLabels),
("hasCorrectStructure", hasCorrectStructure) ]
# RZ: June 2015 - need to subtract misclassified edges from non-matching edges
# to obtain correct "Delta S" (D_S) Hamming distance for mismatched
# segmentation edges.
segEdgeMismatch = edgeDiffCount - edgeDiffClassCount
return (segEdgeMismatch, segDiffs, correctSegments, metrics, primRelEdgeDiffs)
def compare(self, lg2):
"""Returns: 1. a list of (metric,value) pairs,
2. a list of (n1,n2) node disagreements, 3. (e1,e2) pairs
for edge disagreements, 4. dictionary from primitives to
disagreeing segment graph edges for (self, lg2). Node and
edge labels are compared using label sets without values, and
*not* labels sorted by value."""
metrics = []
nodeconflicts = []
edgeconflicts = []
# HM: use the union of all node labels instead of only lg2 ones
# it changes the nlabelMismatch, nodeClassError and so D_C and all rates values
allNodes = set(list(lg2.nlabels)).union(list(self.nlabels))
numNodes = len(allNodes)
(sp2, ps2, _, sre2) = lg2.segmentGraph()
nSegRelEdges = len(sre2)
# Handle case of empty graphs, and missing primitives.
# SIDE EFFECT: 'ABSENT' nodes added to each graph.
self.matchAbsent(lg2)
# METRICS
# Node and edge labels are considered as sets.
nlabelMismatch = 0
numEdges = numNodes * (numNodes - 1) # No self-edges.
numLabels = numNodes + numEdges
elabelMismatch = 0
# Mismatched nodes.
nodeClassError = set()
for nid in allNodes: #list(self.nlabels):
(cost,errL) = self.cmpNodes(list(self.nlabels[nid]),list(lg2.nlabels[nid]))
#if there is some error
if cost > 0:
# add mismatch
nlabelMismatch = nlabelMismatch + cost
# add errors in error list
for (l1,l2) in errL:
nodeconflicts = nodeconflicts + [ (nid, [ (l1, 1.0) ], [(l2, 1.0)] ) ]
# add node in error list
nodeClassError = nodeClassError.union([nid])
# Two-sided comparison of *label sets* (look from absent edges in both
# graphs!) Must check whether edge exists; '_' represents a "NONE"
# label (no edge).
# Identify the set of nodes with disagreeing edges.
nodeEdgeError = set()
for (graph,oGraph) in [ (self,lg2), (lg2,self) ]:
for npair in list(graph.elabels):
if not npair in oGraph.elabels \
and (not graph.elabels[ npair ] == ['_']):
(cost,errL) = self.cmpEdges(list(graph.elabels[ npair ]),['_'])
elabelMismatch = elabelMismatch + cost
nodeEdgeError.update([a,b])
# DEBUG: Need to indicate correctly *which* graph has the
# missing edge; this graph (1st) or the other (listed 2nd).
if graph == self:
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l2, 1.0) ], [(l1, 1.0)] ) )
# Obtain number of primitives with an error of any sort.
nodeError = nodeClassError.union(nodeEdgeError)
# One-sided comparison for common edges. Compared by cmpEdges
for npair in list(self.elabels):
if npair in list(lg2.elabels):
(cost,errL) = self.cmpEdges(list(self.elabels[npair]),list(lg2.elabels[npair]))
if cost > 0:
elabelMismatch = elabelMismatch + cost
(a,b) = npair
# Record nodes in invalid edge
nodeEdgeError.update([a,b])
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
(segEdgeMismatch, segDiffs, correctSegs, segmentMetrics, segRelDiffs) \
= self.compareSegments(lg2)
# UNDIRECTED/NODE PAIR METRICS
# Compute number of invalid nodePairs
badPairs = {}
for ((n1, n2), _, _) in edgeconflicts:
if not (n2, n1) in badPairs:
badPairs[(n1, n2)] = True
incorrectPairs = len(badPairs)
# Compute number of mis-segmented node pairs.
badSegPairs = set([])
for node in list(segDiffs):
if node != other and (other, node) not in badSegPairs:
badSegPairs.add((node, other))
if node != other and (other, node)not in badSegPairs:
badSegPairs.add((node, other))
segPairErrors = len(badSegPairs)
# Compute performance metrics; avoid divisions by 0.
cerror = ("D_C", nlabelMismatch)
lerror = ("D_L", elabelMismatch)
serror = ("D_S", segEdgeMismatch)
rerror = ("D_R", elabelMismatch - segEdgeMismatch)
aerror = ("D_B", nlabelMismatch + elabelMismatch)
# DEBUG:
# Delta E BASE CASE: for a single node, which is absent in the other
# file, set label and segment edge mismatches to 1 (in order
# to obtain 1.0 as the error metric, i.e. total error).
if len(list(self.nlabels)) == 1 and \
(len(self.absentNodes) > 0 or \
len(lg2.absentNodes) > 0):
elabelMismatch = 1
segEdgeMismatch = 1
errorVal += math.sqrt(float(segEdgeMismatch) / numEdges) + \
math.sqrt(float(elabelMismatch) / numEdges)
if numNodes > 0:
errorVal += float(nlabelMismatch) / numNodes
errorVal = errorVal / 3.0
eerror = ("D_E(%)", errorVal)
# Compile metrics
metrics = metrics + [ aerror, cerror, lerror, rerror, serror, \
eerror, \
("nNodes",numNodes), ("nEdges", numEdges), \
("nSegRelEdges", nSegRelEdges), \
("dPairs",incorrectPairs),("segPairErrors",segPairErrors),
("nodeCorrect", numNodes - len(nodeError)) ]
metrics = metrics + segmentMetrics