Newer
Older
################################################################
# lg.py - Label Graph Class
# Authors: R. Zanibbi and H. Mouchere, 2012
# Copyright (c) 2012-2014 Richard Zanibbi and Harold Mouchere
################################################################
import csv
import sys
import math
import copy
import compareTools
import os
class Lg(object):
"""Class for bipartite graphs where the two node sets are identical, and
multiple node and edge labels are permited. The graph and individual nodes
and edges have associated values (e.g. weights/probabilities)."""
# Define graph data elements ('data members' for an object in the class)
__slots__ = ('file','gweight','nlabels','elabels','error','absentNodes',\
'absentEdges','hiddenEdges', 'cmpNodes', 'cmpEdges')
##################################
# Constructors (in __init__)
##################################
def __init__(self,*args):
"""Graph data is read from a CSV file or provided node and edge label
dictionaries. If invalid entries are found, the error flag is set to
true, and graph input continues. In .lg files, blank lines are
ignored, and # may be used for comment lines in CSV graph files."""
self.error = False
self.gweight = 1.0
self.nlabels = {}
self.elabels = {}
self.absentNodes = set([])
self.absentEdges = set([])
self.hiddenEdges = {}
self.cmpNodes = compareTools.cmpNodes
self.cmpEdges = compareTools.cmpEdges
validAsteriskEdges = set()
invalidAsteriskNodes = set()
if len(args) == 1:
fileName = args[0]
self.file = fileName # DEBUG: add filename for debugging purposes.
elif len(args) == 2:
nodeLabels = args[0]
edgeLabels = args[1]
if fileName == None:
# CONSTRUCTOR 1: try to read in node and edge labels.
self.file = None
# Automatically convert identifiers and labels to strings if needed.
for nid in nodeLabels.keys():
if not isinstance(nid, str):
nid = str(nid)
newdict = {}
for label in nodeLabels[nid].keys():
if not isinstance(nid, str):
label = str(label)
# Weights need to be floats.
if not isinstance( nodeLabels[nid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for node ' + nid + ', label \"' \
+ label +"\": " + str(nodeLabels[nid][label]) + "\n")
newdict[ label ] = nodeLabels[nid][label]
self.nlabels[nid] = newdict
# WARNING: self-edges are not detected if edge labels used
# for initialization.
for eid in edgeLabels.keys():
if not isinstance(eid[0], str) or not isinstance(eid[1],str):
eid[0] = str(eid[0])
eid[1] = str(eid[1])
newdict = {}
for label in edgeLabels[eid].keys():
if not isinstance(label, str):
label = str(label)
if not isinstance( edgeLabels[eid][label], float ):
self.error = True
sys.stderr.write(' !! Invalid weight for edge ' + str(eid) + ', label \"' \
+ label +"\": " + str(edgeLabels[eid][label]) + "\n")
newdict[ label ] = edgeLabels[eid][label]
self.elabels[eid] = newdict
else:
# CONSTRUCTOR 2: Read graph data from CSV file.
MIN_NODE_ENTRY_LENGTH = 3
MIN_EDGE_ENTRY_LENGTH = 4
MIN_OBJECT_ENTRY_LENGTH = 5
MIN_OBJECT_EDGE_ENTRY_LENGTH = 5
try:
fileReader = csv.reader(open(fileName))
except:
# Create an empty graph if a file cannot be found.
# Set the error flag.
sys.stderr.write(' !! IO Error (cannot open): ' + fileName + '\n')
self.error = True
return
objectDict = dict([])
for row in fileReader:
# Skip blank lines.
if len(row) == 0 or len(row) == 1 and row[0].strip() == '':
continue
entryType = row[0].strip()
if entryType == 'N':
if len(row) < MIN_NODE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid node entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
nid = row[1].strip() # remove leading/trailing whitespace
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
nlabel = row[2].strip()
# if nlabel in nlabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated node label entry ('\
# + self.file + '): ' \
# + '\n\t' + str(row) + '\n')
# self.error = True
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[3])
else:
# New primitive; create new dictionary for
# provided label (row[2]) and value (row[3])
nid = row[1].strip()
nlabel = row[2].strip()
# Feb. 2013 - allow no weight to be provided.
if len(row) > MIN_NODE_ENTRY_LENGTH:
self.nlabels[ nid ] = { nlabel : float(row[3]) }
else:
self.nlabels[ nid ] = { nlabel : 1.0 }
elif entryType == 'E':
if len(row) < MIN_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid edge entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
primPair = ( row[1].strip(), row[2].strip() )
#self to self edge = error
if primPair[0] == primPair[1]:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
nid = primPair[0]
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
nlabel = row[3].strip()
# if nlabel in nlabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated node label entry ('\
# + self.file + '): ' \
# + '\n\t' + str(row) + '\n')
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = float(row[4])
#an edge already existing, add a new label
elif primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
elabel = row[3].strip()
# if elabel in elabelDict:
# # Note possible error.
# sys.stderr.write(' !! Repeated edge label entry (' \
# + self.file + '):\n\t' + str(row) + '\n')
# self.error = True
if elabel == '*':
# if using old fashion segmentation label, convert it by finding the (only) node label
if primPair[0] in self.nlabels and primPair[1] in self.nlabels and \
self.nlabels[ primPair[0]] == self.nlabels[ primPair[1]]:
elabel = list(self.nlabels[ primPair[0]].keys())[0]
validAsteriskEdges.add( primPair )
else:
sys.stderr.write(' !! * edge used with ambiguous node labels (' \
+ str(self.nlabels[ primPair[0]]) + ' vs. ' \
+ str(self.nlabels[ primtPair[1]]) + ') in ' \
+ self.file + '):\n\t' + ", ".join(row) + '\n')
# RZ: Oct. 14 - cheap and dirty correction.
elabel = 'MergeError'
self.nlabels[ primPair[0] ] = { elabel : 1.0 }
self.nlabels[ primPair[1] ] = { elabel : 1.0 }
self.error = True
invalidAsteriskNodes.add( primPair[0] )
invalidAsteriskNodes.add( primPair[1] )
# Add (or replace) entry for the label.
# Feb. 2013 - allow no weight.
if len(row) > MIN_EDGE_ENTRY_LENGTH:
elabelDict[ elabel ] = float(row[4])
else:
elabelDict[ elabel ] = 1.0
else:
# Add new edge label entry for the new edge label
# as a dictionary.
primPair = ( row[1].strip(), row[2].strip() )
elabel = row[3].strip()
if elabel == '*':
# if using old fashion segmentation label, convert it by finding the (only) node label
if primPair[0] in self.nlabels and primPair[1] in self.nlabels and \
self.nlabels[ primPair[0]] == self.nlabels[ primPair[1]]:
elabel = list(self.nlabels[ primPair[0]].keys())[0]
validAsteriskEdges.add( primPair )
else:
sys.stderr.write(' !! * edge used with ambiguous node labels (' \
+ str(self.nlabels[ primPair[0]]) + ' vs. ' \
+ str(self.nlabels[ primPair[1]]) + ') in ' \
+ self.file + '):\n\t' + ", ".join(row) + '\n')
elabel = 'MergeError'
self.nlabels[ primPair[0] ] = { elabel : 1.0 }
self.nlabels[ primPair[1] ] = { elabel : 1.0 }
self.error = True
invalidAsteriskNodes.add( primPair[0] )
invalidAsteriskNodes.add( primPair[1] )
elif entryType == 'O':
if len(row) < MIN_OBJECT_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: '+str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
rawnodeList = row[4:] # get all other item as node id
oid = row[1].strip()
nlabel = row[2].strip()
nValue = float(row[3].strip())
nodeList = []
# add all nodes
for n in rawnodeList:
nid = n.strip()
nodeList.append(nid)
if nid in self.nlabels.keys():
nlabelDict = self.nlabels[ nid ]
# Add (or replace) entry for the label.
nlabelDict[ nlabel ] = nValue
else:
# New primitive; create new dictionary for
# provided label and value
# Feb. 2013 - allow no weight to be provided.
self.nlabels[ nid ] = { nlabel : nValue }
#save the nodes of this object
objectDict[oid] = nodeList
#add all edges
for nid1 in nodeList:
#nid1 = n1.strip()
for nid2 in nodeList:
#nid2 = n2.strip()
if nid1 != nid2:
primPair = ( nid1, nid2 )
elabel = nlabel
if primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
# Add (or replace) entry for the label.
elabelDict[ elabel ] = nValue
else:
# Add new edge label entry for the new edge label
# as a dictionary.
self.elabels[ primPair ] = { elabel : nValue }
elif entryType == 'R' or entryType == 'EO':
if len(row) < MIN_OBJECT_EDGE_ENTRY_LENGTH:
sys.stderr.write(' !! Invalid object entry length: ' +str(len(row))+\
'\n\t' + str(row) + '\n')
self.error = True
else:
oid1 = row[1].strip()
oid2 = row[2].strip()
elabel = row[3].strip()
eValue = float(row[4].strip())
validRelationship = True
if not oid1 in objectDict:
sys.stderr.write(' !! Invalid object id: "' + oid1+\
'" - IGNORING relationship:\n\t' + str(row) + '\n')
self.error = True
validRelationship = False
if not oid2 in objectDict:
sys.stderr.write(' !! Invalid object id: "' + oid2+\
'" - IGNORING relationship:\n\t' + str(row) + '\n')
self.error = True
validRelationship = False
if validRelationship:
nodeList1 = objectDict[oid1] # get all other item as node id
nodeList2 = objectDict[oid2] # get all other item as node id
for nid1 in nodeList1:
for nid2 in nodeList2:
if nid1 != nid2:
primPair = ( nid1, nid2 )
if primPair in self.elabels.keys():
elabelDict = self.elabels[ primPair ]
# Add (or replace) entry for the label.
elabelDict[ elabel ] = eValue
else:
# Add new edge label entry for the new edge label
# as dictionary.
self.elabels[ primPair ] = { elabel : eValue }
else:
sys.stderr.write(' !! Invalid self-edge (' +
self.file + '):\n\t' + str(row) + '\n')
self.error = True
# DEBUG: complaints about empty lines here...
elif len(entryType.strip()) > 0 and entryType.strip()[0] == '#':
# Ignore lines with comments.
pass
else:
sys.stderr.write(' !! Invalid graph entry type (expected N, E, O, R or EO): ' \
+ str(row) + '\n')
self.error = True
# Add any implicit nodes in edges explicitly to the hash table
# containing nodes. The 'nolabel' label is '_'.
anonNode = False
anodeList = []
for elabel in self.elabels.keys():
nid1 = elabel[0]
nid2 = elabel[1]
if not nid1 in self.nlabels.keys():
self.nlabels[ nid1 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid1 ]
anonNode = True
if not nid2 in self.nlabels.keys():
self.nlabels[ nid2 ] = { '_' : 1.0 }
anodeList = anodeList + [ nid2 ]
anonNode = True
if anonNode:
sys.stderr.write(' ** Anonymous labels created for:\n\t' \
+ str(anodeList) + '\n')
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# RZ Oct. 2014: add invalid merge edges and node labels where missing.
# This catches when a valid * edge is connected to an invalid one,
# relabeling the edge.
invalidAsteriskNodeList = sorted( list(invalidAsteriskNodes) )
while len(invalidAsteriskNodeList) > 0:
# Remove last element from the list.
nextPrimId = invalidAsteriskNodeList.pop()
# Linear traversal for matches (a 'region growing' algorithm)
# Add a traversal each time a new connected edge is found.
# NOTE: this will not add edges missing in the input (e.g.
# if '*' is defined in one direction but not the other.
for (parent, child) in validAsteriskEdges:
otherId = None
if parent == nextPrimId:
otherId = child
if child == nextPrimId:
otherId = parent
if otherId != None:
if not otherId in invalidAsteriskNodes:
invalidAsteriskNodes.add( otherId )
invalidAsteriskNodeList.append( otherId )
self.nlabels[ otherId ] = { 'MergeError' : 1.0 }
self.elabels[ (parent, child) ] = { 'MergeError' : 1.0 }
##################################
# String, CSV output
##################################
def __str__(self):
nlabelcount = 0
elabelcount = 0
for nid in self.nlabels.keys():
nlabelcount = nlabelcount + len(self.nlabels[nid].keys())
for eid in self.elabels.keys():
elabelcount = elabelcount + len(self.elabels[eid].keys())
return 'Nodes: ' + str(len(self.nlabels.keys())) \
+ ' (labels: ' + str(nlabelcount) \
+ ') Edges: ' + str(len(self.elabels.keys())) \
+ ' (labels: ' + str(elabelcount) \
+ ') Error: ' + str(self.error)
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
def csvObject(self):
"""Construct CSV data file using object-relationship format. Currently
weight values are only placeholders (i.e. 1.0 is always used)."""
outputString = ""
(segmentPrimitiveMap, primitiveSegmentMap, rootSegments, \
segmentEdges) = self.segmentGraph()
# Write the file name.
outputString += "# " + os.path.split(self.file)[1]
outputString += "\n\n"
# Write number of objects and format information.
# Output object information.
outputString += "# " + str(len(segmentPrimitiveMap.keys())) + " Objects"
outputString += "\n"
outputString += "# FORMAT: O, Object ID, Label, Weight, [ Primitive ID List ]"
outputString += "\n"
for objectId in sorted( segmentPrimitiveMap.keys() ):
for label in sorted(segmentPrimitiveMap[objectId][1]):
outputString += "O, " + objectId + ", " + label + ", 1.0"
for primitiveId in sorted( segmentPrimitiveMap[ objectId ][ 0 ] ):
outputString += ", " + primitiveId
outputString += "\n"
# Write number of relationships and format information.
# Write relationship information.
outputString += "\n"
outputString += "# " + str( len(segmentEdges.keys()) ) + " Relationships (Pairs of Objects)"
outputString += "\n"
outputString += "# FORMAT: R, Object ID (parent), Object ID (child), Label, Weight"
outputString += "\n"
for (parentObj, childObj) in sorted( segmentEdges.keys() ):
for relationship in sorted( segmentEdges[ (parentObj, childObj) ].keys() ):
outputString += "R, " + parentObj + ", " + childObj + ", "
outputString += relationship + ", 1.0"
outputString += "\n"
return outputString
def csv(self):
"""Construct CSV data file representation as a string."""
# NOTE: currently the graph value is not being stored...
sstring = ''
nlist = []
elist = []
for nkey in self.nlabels.keys():
nodeLabels = self.nlabels[nkey]
for nlabel in nodeLabels.keys():
nstring = 'N,' + nkey + ',' + nlabel + ',' + \
str(nodeLabels[nlabel]) + '\n'
nlist = nlist + [ nstring ]
for npair in self.elabels.keys():
edgeLabels = self.elabels[npair]
for elabel in edgeLabels.keys():
estring = 'E,' + npair[0] + ',' + npair[1] + ',' + elabel + ',' + \
str(edgeLabels[ elabel ]) + '\n'
elist = elist + [ estring ]
# Sort the node and edge strings lexicographically.
# NOTE: this means that '10' precedes '2' in the sorted ordering
nlist.sort()
elist.sort()
sstring += '# ' + os.path.split(self.file)[1] + '\n\n'
sstring += '# ' + str(len(nlist)) + ' Nodes\n'
sstring += "# FORMAT: N, Primitive ID, Label, Weight\n"
sstring += "\n"
sstring += '# ' + str(len(elist)) + ' Edges\n'
sstring += '# FORMAT: E, Primitive ID (parent), Primitive ID (child), Label, Weight\n'
for estring in elist:
sstring = sstring + estring
return sstring
##################################
# Construct segment-based graph
# for current graph state
##################################
def segmentGraph(self):
"""Return dictionaries from segments to strokes, strokes to segments,
segments without parents, and edges labeled as segment (w. symbol label)."""
#noparentSegments = []
segmentEdges = {} # Edges between detected objects (segments)
self.hideUnlabeledEdges()
# Note: a segmentation edge in either direction merges a primitive pair.
primSets = {}
for node,labs in self.nlabels.items():
primSets[node] = {}
for l in labs:
(cost,_)=self.cmpNodes([l],[])
if(cost > 0):
primSets[node][l] = set([node])
#if len(primSets[node]) == 0:
# primSets[node]['_'] = set([node]) #at least one empty label
commonLabels = set(self.nlabels[n1].keys()).intersection(self.nlabels[n2].keys(),self.elabels[(n1,n2)].keys())
for l in commonLabels:
#check if this label is interesting or not => compare to 'nothing', if there is not error, it means it is not interesting
(cost,_)=self.cmpNodes([l],[])
if(cost > 0):
primSets[n1][l].add(n2)
primSets[n2][l].add(n1)
# NOTE: Segments can have multiple labels
# A primitive can belong to several different
# segments with different sets of primitives with different labels.
# but there is only one segment with the same label attached to each primitive.
# For each label associated with each primitive, there is a possible object/segment
for primitive,segments in primSets.items():
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
for lab in segments.keys():
alreadySegmented = False
for j in range(len(segmentList)):
if segments[lab] == segmentList[j]["prim"]:
if not primitive in primitiveSegmentMap:
primitiveSegmentMap[ primitive ] = {}
primitiveSegmentMap[ primitive ][lab] = 'Obj' + str(j)
alreadySegmented = True
if lab not in segmentList[j]["label"]:
segmentPrimitiveMap[ 'Obj' + str(j) ][1].append(lab)
segmentList[j]["label"].add(lab)
break
if not alreadySegmented:
# Add the new segment.
newSegment = 'Obj' + str(i)
segmentList = segmentList + [ {"label":{lab},"prim":primSets[primitive][lab]} ]
segmentPrimitiveMap[ newSegment ] = (segments[lab],[lab])
primitiveSegmentMap[ primitive ][lab] = newSegment
rootSegments.add(newSegment)
i += 1
# Identify 'root' objects/segments (i.e. with no incoming edges),
# and edges between objects. **We skip segmentation edges.
for (n1, n2), elabs in self.elabels.items():
segment2 = primitiveSegmentMap[n2]
#for all possible pair of segments with these two primitives, look for the effective relation labels
possibleRelationLabels = set(elabs.keys()).difference(self.nlabels[n1].keys(),self.nlabels[n2].keys())
if len(possibleRelationLabels) != 0:
#for all pair of labels
for l1,pset1 in segment1.items():
for l2, pset2 in segment2.items():
#if not in the same seg
if pset1 != pset2:
#look for the label which is common for all primitive pair in the two segments
theRelationLab = possibleRelationLabels
for p1 in primSets[n1][l1]:
for p2 in primSets[n2][l2]:
if(p1,p2) in self.elabels:
theRelationLab &= set(self.elabels[(p1,p2)].keys())
else:
theRelationLab = set([]) # it should be a clique !
if len(theRelationLab) == 0:
break
if len(theRelationLab) == 0:
break
# there is a common relation if theRelationLab is not empty
if len(theRelationLab) != 0:
#we can remove seg2 from the roots
if pset2 in rootSegments:
rootSegments.remove(pset2)
#print (str((n1, n2))+ " => " + str(( pset1, pset2)) + " = " + str(theRelationLab))
for label in theRelationLab:
#check if this label is interesting or not => compare to 'nothing', if there is not error, it means it is not interesting
(cost,_)=self.cmpNodes([label],[])
if(cost > 0):
if ( pset1, pset2) in segmentEdges:
if label in segmentEdges[ ( pset1, pset2) ]:
# Sum weights for repeated labels
segmentEdges[ ( pset1, pset2)][label] += \
self.elabels[(n1,n2)][label]
else:
# Add unaltered weights for new edge labels
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
segmentEdges[ ( pset1, pset2) ] = {}
segmentEdges[ ( pset1, pset2) ][label] = \
self.elabels[(n1,n2)][label]
self.restoreUnlabeledEdges()
return (segmentPrimitiveMap, primitiveSegmentMap, list(rootSegments), \
segmentEdges)
##################################
# Metrics and Graph Differences
##################################
def compareSegments(self, lg2):
"""Compute the number of differing segments, and record disagreements.
The primitives in each graph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value)
pairs on nodes and all incoming and outgoing edges."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(sp2, ps2, _, sre2) = lg2.segmentGraph()
allNodes = set(ps1.keys())
assert allNodes == set(ps2.keys())
edgeDiffCount = 0
edgeDiffClassCount = 0
correctSegments = set([])
correctSegmentsAndClass = set([])
undirDiffClassSet = set([])
# List and count errors due to segmentation.
# Use cmpNodes to compare the labels of symbols.
# Idea : build the sub graph with the current primitive as center and only
#print("IN---")
edgeFromP1 = {}
edgeFromP2 = {}
for (lab1,seg1) in ps1[primitive].items():
for p in sp1[seg1][0]:
# DEBUG (RZ): this is producing a primitive edge-level count:
# do not count segment edges that are undefined (e.g. in one direction,
# but not the other)
if p != primitive and (p,primitive) in self.elabels.keys() and \
lab1 in self.elabels[ (p,primitive) ].keys():
if p in edgeFromP1:
edgeFromP1[p].append(lab1)
else:
edgeFromP1[p] = [lab1]
for (lab2,seg2) in ps2[primitive].items():
for p in sp2[seg2][0]:
# DEBUG (RZ) - see DEBUG comment above.
if p != primitive and (p,primitive) in lg2.elabels.keys() and \
lab2 in lg2.elabels[ (p, primitive) ].keys():
if p in edgeFromP2:
edgeFromP2[p].append(lab2)
else:
edgeFromP2[p] = [lab2]
# Compute differences in edges labels with cmpNodes (as they are symbol labels)
diff1 = set([])
diff2 = set([])
# first add differences for shared primitives
commonPrim = set(edgeFromP1.keys()).intersection(edgeFromP2.keys())
for p in commonPrim:
(cost,diff) = self.cmpNodes(edgeFromP1[p], edgeFromP2[p])
edgeDiffCount = edgeDiffCount + cost
if cost > 0: # somehow they disagree, thus add in both sets
diff1.add(p)
diff2.add(p)
# RZ: Record edges that are specifically valid merges with disagreeing labels.
# Also record sets of undirected edges that disagree.
for (l1,l2) in diff:
if l1 in self.nlabels[p].keys() and l2 in lg2.nlabels[p].keys():
edgeDiffClassCount += 1
if not (p, primitive) in undirDiffClassSet and not (primitive, p) in undirDiffClassSet:
undirDiffClassSet.add( (primitive, p) )
#then add differences for primitives which are not in the other set
for p in (set(edgeFromP1.keys()) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP1[p], [])
edgeDiffCount = edgeDiffCount + cost
diff1.add(p)
for p in (set(edgeFromP2.keys()) - commonPrim):
(cost,diff) = self.cmpNodes(edgeFromP2[p], [])
edgeDiffCount = edgeDiffCount + cost
diff2.add(p)
# Only create an entry where there are disagreements.
if len(diff1) + len(diff2) > 0:
segDiffs[primitive] = ( diff1, diff2 )
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# RZ: Oct. 2014 - replacing method used to evaluate segmentation. Also
# add checks for segments in the target being disjoint.
#
# Objects are defined by a set of primitives, plus a label.
# NOTE: This currently will support mutliple labels, but will lead to invalid
# "Class/Det" values in 00_Summary.txt if there are multiple labels.
targets = {}
matchedTargets = set()
for ObjID in sp2.keys():
# Skip absent nodes - they are not valid targets.
if 'ABSENT' not in sp2[ ObjID ][ 1 ]:
# Convert primitive set to a sorted tuple list.
primitiveTupleList = tuple( sorted( list( sp2[ ObjID ][ 0 ] ) ) )
# Store target label in targets dict, matches in matchedTargets dict (false init.)
targets[ primitiveTupleList ] = sp2[ ObjID][1]
# Look for matches.
# Do *not* allow a primitive set to be matched more than once.
for ObjID in sp1.keys():
primitiveTupleList = tuple( sorted( list(sp1[ObjID][ 0 ] )))
if primitiveTupleList in targets.keys() \
and not primitiveTupleList in matchedTargets:
matchedTargets.add( primitiveTupleList )
correctSegments.add( ObjID )
# Obtain matching labels. Create list of correct (segmentId, label) pairs
# for *all* matching labels.
# DEBUG: empty lists were being matched! Added test for empty matches.
# WARNING: Only guaranteed to work for single labels.
outputLabels = set(sp1[ ObjID ][ 1 ])
matchingLabels = list( outputLabels.intersection( targets[ primitiveTupleList ] ) )
if len(matchingLabels) > 0:
ObjIDRepeats = [ObjID] * len(matchingLabels)
correctSegmentsAndClass.add( tuple( zip(ObjIDRepeats, list(matchingLabels))))
#print("NODES : " + str(primitiveTupleList) + " LABELS: " + str(outputLabels) + " MATCH: " + str(matchingLabels))
#print(" CORRECT: " + str(correctSegmentsAndClass) )
# Compute total number of object classifications (recognition targets)
nbSegmClass = 0
for (_,labs) in sp2.items():
nbSegmClass += len(labs[1])
# Compute the specific 'object-level' graph edges that disagree, at the
# level of primitive-pairs.
correctSegRels = 0
correctSegRelLocations = 0
primRelEdgeDiffs = {}
# Iterate over object relationships in the output graph.
misLabeled = False
falsePositive = False
thisParentIds = set(sp1[ thisPair[0] ][0])
thisChildIds = set(sp1[thisPair[1] ][0])
# Check whether the objects are correctly segmented by their object identifiers
# (avoid counting mis-segmented objects as having valid relationships)
if not ( thisPair[0] in correctSegments and thisPair[1] in correctSegments) or \
not thisPair in sre2.keys():
falsePositive = True
else:
# Check that all edges between object primitives are the same.
for parentId in thisParentIds:
for childId in thisChildIds:
if not (parentId, childId) in lg2.elabels.keys():
falsePositive = True
continue
else:
(cost, diffLabelPairList) = \
self.cmpEdges(self.elabels[ (parentId, childId) ].keys(), \
lg2.elabels[ (parentId, childId) ].keys())
if not cost == 0:
misLabeled = True
continue
if falsePositive or misLabeled:
# NOTE: assumes single labels on primitives.
# primRelEdgeDiffs records which object pairs have incorrect labels.
if falsePositive or misLabeled:
self.error = True
segRelErrors += 1
primRelEdgeDiffs[ thisPair ] = [ ('Error',1.0) ]
else:
correctSegRels += 1
# Count correct relationship structures/locations.
if not falsePositive:
correctSegRelLocations += 1
# Compute object counts *without* inserted absent nodes.
lg2.removeAbsent()
self.removeAbsent()
(sp2orig, ps2orig, _, sre2orig) = lg2.segmentGraph()
(sp1orig, ps1orig, _, sre1orig) = self.segmentGraph()
nLg2Objs = len(sp2orig.keys())
nLg1Objs = len(sp1orig.keys())
# For input file, need to compare against all objects after including
# missing/additional absent nodes and edges.
nLg1ObjsWithAbsent = len(sp1.keys())
lg2.addAbsent(self)
self.addAbsent(lg2)
#print(sorted(sre1.keys()))
#print(sorted(sre2.keys()))
# RZ (Oct. 2014) Adding indicator variables for different correctness scenarios.
hasCorrectSegments = 1 if len(correctSegments) == nLg2Objs and \
len(correctSegments) == nLg1ObjsWithAbsent else 0
hasCorrectSegmentsAndLabels = 1 if len(correctSegmentsAndClass) == nLg2Objs and \
len(correctSegmentsAndClass) == nLg1ObjsWithAbsent else 0
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
hasCorrectRelationLocations = 1 if correctSegRelLocations == len(sre1.keys()) and \
correctSegRelLocations == len(sre2.keys()) else 0
hasCorrectRelationsAndLabels = 1 if correctSegRels == len(sre1.keys()) and \
correctSegRels == len(sre2.keys()) else 0
hasCorrectStructure = hasCorrectRelationLocations and hasCorrectSegments
# Compile vector of (name, value) metric pairs.
metrics = [
("edgeDiffClassCount", edgeDiffClassCount),
("undirDiffClassCount", len(undirDiffClassSet)),
("nSeg", nLg2Objs),
("detectedSeg", nLg1Objs),
("dSegRelEdges", len(sre1.keys())),
("CorrectSegments", len(correctSegments)),
("CorrectSegmentsAndClass", len(correctSegmentsAndClass)),
("ClassError", nbSegmClass - len(correctSegmentsAndClass)),
("CorrectSegRels",correctSegRels),
("CorrectSegRelLocations",correctSegRelLocations),
("SegRelErrors", segRelErrors),
("hasCorrectSegments", hasCorrectSegments),
("hasCorrectSegLab", hasCorrectSegmentsAndLabels),
("hasCorrectRelationLocations", hasCorrectRelationLocations),
("hasCorrectRelLab", hasCorrectRelationsAndLabels),
("hasCorrectStructure", hasCorrectStructure) ]
return (edgeDiffCount, segDiffs, correctSegments, metrics, primRelEdgeDiffs)
def compare(self, lg2):
"""Returns: 1. a list of (metric,value) pairs,
2. a list of (n1,n2) node disagreements, 3. (e1,e2) pairs
for edge disagreements, 4. dictionary from primitives to
disagreeing segment graph edges for (self, lg2). Node and
edge labels are compared using label sets without values, and
*not* labels sorted by value."""
metrics = []
nodeconflicts = []
edgeconflicts = []
# HM: use the union of all node labels instead of only lg2 ones
# it changes the nlabelMismatch, nodeClassError and so D_C and all rates values
allNodes = set(lg2.nlabels.keys()).union(self.nlabels.keys())
numNodes = len(allNodes)
(sp2, ps2, _, sre2) = lg2.segmentGraph()
nSegRelEdges = len(sre2)
# Handle case of empty graphs, and missing primitives.
# SIDE EFFECT: 'ABSENT' nodes added to each graph.
self.matchAbsent(lg2)
# METRICS
# Node and edge labels are considered as sets.
nlabelMismatch = 0
numEdges = numNodes * (numNodes - 1) # No self-edges.
numLabels = numNodes + numEdges
elabelMismatch = 0
# Mismatched nodes.
nodeClassError = set()
for nid in allNodes: #self.nlabels.keys():
(cost,errL) = self.cmpNodes(self.nlabels[nid].keys(),lg2.nlabels[nid].keys())
#if there is some error
if cost > 0:
# add mismatch
nlabelMismatch = nlabelMismatch + cost
# add errors in error list
for (l1,l2) in errL:
nodeconflicts = nodeconflicts + [ (nid, [ (l1, 1.0) ], [(l2, 1.0)] ) ]
# add node in error list
nodeClassError = nodeClassError.union([nid])
# Two-sided comparison of *label sets* (look from absent edges in both
# graphs!) Must check whether edge exists; '_' represents a "NONE"
# label (no edge).
# Identify the set of nodes with disagreeing edges.
nodeEdgeError = set()
for (graph,oGraph) in [ (self,lg2), (lg2,self) ]:
for npair in graph.elabels.keys():
if not npair in oGraph.elabels \
and (not graph.elabels[ npair ] == ['_']):
(cost,errL) = self.cmpEdges(graph.elabels[ npair ].keys(),['_'])
elabelMismatch = elabelMismatch + cost
nodeEdgeError.update([a,b])
# DEBUG: Need to indicate correctly *which* graph has the
# missing edge; this graph (1st) or the other (listed 2nd).
if graph == self:
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l2, 1.0) ], [(l1, 1.0)] ) )
# Obtain number of primitives with an error of any sort.
nodeError = nodeClassError.union(nodeEdgeError)
# One-sided comparison for common edges. Compared by cmpEdges
if npair in lg2.elabels.keys():
(cost,errL) = self.cmpEdges(self.elabels[npair].keys(),lg2.elabels[npair].keys())
if cost > 0:
elabelMismatch = elabelMismatch + cost
(a,b) = npair
# Record nodes in invalid edge
nodeEdgeError.update([a,b])
for (l1,l2) in errL:
edgeconflicts.append((npair, [ (l1, 1.0) ], [(l2, 1.0)] ) )
(segMismatch, segDiffs, correctSegs, segmentMetrics, segRelDiffs) \
= self.compareSegments(lg2)
# UNDIRECTED/NODE PAIR METRICS
# Compute number of invalid nodePairs
badPairs = {}
for ((n1, n2), _, _) in edgeconflicts:
if not (n2, n1) in badPairs:
badPairs[(n1, n2)] = True
incorrectPairs = len(badPairs)
# Compute number of mis-segmented node pairs.
badSegPairs = set([])
for node in segDiffs.keys():
for other in segDiffs[node][0]:
if node != other and (other, node) not in badSegPairs:
badSegPairs.add((node, other))
if node != other and (other, node)not in badSegPairs:
badSegPairs.add((node, other))
segPairErrors = len(badSegPairs)
# Compute performance metrics; avoid divisions by 0.
cerror = ("D_C", nlabelMismatch)
lerror = ("D_L", elabelMismatch)
rerror = ("D_R", elabelMismatch - segMismatch)
aerror = ("D_B", nlabelMismatch + elabelMismatch)
# DEBUG:
# Delta E BASE CASE: for a single node, which is absent in the other
# file, set label and segment edge mismatches to 1 (in order
# to obtain 1.0 as the error metric, i.e. total error).
if len(self.nlabels.keys()) == 1 and \
(len(self.absentNodes) > 0 or \
len(lg2.absentNodes) > 0):
elabelMismatch = 1
segMismatch = 1
errorVal = 0.0
if numEdges > 0:
errorVal += math.sqrt(float(segMismatch) / numEdges) + \
math.sqrt(float(elabelMismatch) / numEdges)
if numNodes > 0:
errorVal += float(nlabelMismatch) / numNodes
errorVal = errorVal / 3.0
eerror = ("D_E(%)", errorVal)
# Compile metrics
metrics = metrics + [ aerror, cerror, lerror, rerror, serror, \
eerror, \
("nNodes",numNodes), ("nEdges", numEdges), \
("nSegRelEdges", nSegRelEdges), \
("dPairs",incorrectPairs),("segPairErrors",segPairErrors),
("nodeCorrect", numNodes - len(nodeError)) ]
metrics = metrics + segmentMetrics
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
return (metrics, nodeconflicts, edgeconflicts, segDiffs, correctSegs,\
segRelDiffs)
##################################
# Manipulation/'Mutation'
##################################
def separateTreeEdges(self):
"""Return a list of root nodes, and two lists of edges corresponding to
tree/forest edges, and the remaining edges."""
# First, obtain segments; perform extraction on edges over segments.
(segmentPrimitiveMap, primitiveSegmentMap, noparentSegments, \
segmentEdges) = self.segmentGraph()
# Collect parents and children for each node; identify root nodes.
# (NOTE: root nodes provided already as noparentSegments)
nodeParentMap = {}
nodeChildMap = {}
rootNodes = set(segmentPrimitiveMap.keys())
for (parent, child) in segmentEdges:
if not child in nodeParentMap.keys():
nodeParentMap[ child ] = [ parent ]
rootNodes.remove( child )
else:
nodeParentMap[ child ] += [ parent ]
if not parent in nodeChildMap.keys():
nodeChildMap[ parent ] = [ child ]
else:
nodeChildMap[ parent ] += [ child ]
# Separate non-tree edges, traversing from the root.
fringe = list(rootNodes)
# Filter non-tree edges.
nonTreeEdges = set([])
while len(fringe) > 0:
nextNode = fringe.pop(0)
# Skip leaf nodes.
if nextNode in nodeChildMap.keys():
children = copy.deepcopy(nodeChildMap[ nextNode ])
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
for child in children:
numChildParents = len( nodeParentMap[ child ] )
# Filter edges to children that have more than
# one parent (i.e. other than nextNode)
if numChildParents == 1:
# Child in the tree found, put on fringe.
fringe += [ child ]
else:
# Shift edge to non-tree status.
nonTreeEdges.add((nextNode, child))
nodeChildMap[ nextNode ].remove(child)
nodeParentMap[ child ].remove(nextNode)
# Generate the tree edges from remaining child relationships.
treeEdges = []
for node in nodeChildMap:
for child in nodeChildMap[ node ]:
treeEdges += [ (node, child) ]
return (list(rootNodes), treeEdges, list(nonTreeEdges))
def removeAbsent(self):
"""Remove any absent edges from both graphs, and empty the fields
recording empty objects."""
for absEdge in self.absentEdges:
del self.elabels[ absEdge ]
for absNode in self.absentNodes:
del self.nlabels[ absNode ]
self.absentNodes = set([])
self.absentEdges = set([])
def addAbsent(self, lg2):
"""Identify edges in other graph but not the current one."""
selfNodes = set(self.nlabels.keys())
lg2Nodes = set(lg2.nlabels.keys())
self.absentNodes = lg2Nodes.difference(selfNodes)
# WARN about absent nodes/edges; indicate that there is an error.
if len(self.absentNodes) > 0:
sys.stderr.write(' !! Inserting ABSENT nodes for:\n ' \
+ self.file + ' vs.\n ' + lg2.file + '\n ' \
+ str(sorted(list(self.absentNodes))) + '\n')
self.error = True
# Add "absent" nodes.
# NOTE: all edges to/from "absent" nodes are unlabeled.
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
for missingNode in self.absentNodes:
self.nlabels[ missingNode ] = { 'ABSENT': 1.0 }
def matchAbsent(self, lg2):
"""Add all missing primitives and edges between this graph and
the passed graph. **Modifies both the object and argument graph lg2."""
self.removeAbsent()
self.addAbsent(lg2)
lg2.removeAbsent()
lg2.addAbsent(self)
##################################
# Routines for missing/unlabeled
# edges.
##################################
# Returns NONE: modifies in-place.
def labelMissingEdges(self):
for node1 in self.nlabels.keys():
for node2 in self.nlabels.keys():
if not node1 == node2:
if not (node1, node2) in self.elabels.keys():
self.elabels[(node1, node2)] = {'_' : 1.0 }
# Returns NONE: modifies in-place.
def hideUnlabeledEdges(self):
"""Move all missing/unlabeled edges to the hiddenEdges field."""
# Move all edges labeled '_' to the hiddenEdges field.
for edge in self.elabels.keys():
if set( self.elabels[ edge ].keys() ) == \
set( [ '_' ] ):
self.hiddenEdges[ edge ] = self.elabels[ edge ]
del self.elabels[ edge ]
def restoreUnlabeledEdges(self):
"""Move all edges in the hiddenEdges field back to the set of
edges for the graph."""
for edge in self.hiddenEdges.keys():
self.elabels[ edge ] = self.hiddenEdges[ edge ]
del self.hiddenEdges[ edge ]
##################################
# Merging graphs
##################################
# RETURNS None (modifies 'self' in-place.)
def merge(self, lg2, ncombfn, ecombfn):
"""New node/edge labels are added from lg2 with common primitives. The
value for common node/edge labels updated using ncombfn and
ecombfn respectiveley: each function is applied to current values to
obtain the new value (i.e. v1' = fn(v1,v2))."""
# Deal with non-common primitives/nodes.
# DEBUG: make sure that all absent edges are treated as
# 'hard' decisions (i.e. label ('_',1.0))
self.matchAbsent(lg2)
#self.labelMissingEdges()
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
# Merge node and edgelabels.
mergeMaps(self.nlabels, self.gweight, lg2.nlabels, lg2.gweight, \
ncombfn)
mergeMaps(self.elabels, self.gweight, lg2.elabels, lg2.gweight,\
ecombfn)
# RETURNS None: modifies in-place.
def addWeightedLabelValues(self,lg2):
"""Merge two graphs, adding the values for each node/edge label."""
def addValues( v1, w1, v2, w2 ):
return w1 * v1 + w2 * v2
self.merge(lg2, addValues, addValues)
# RETURNS None: modifies in-place.
def selectMaxLabels(self):
"""Filter for labels with maximum confidence. NOTE: this will
keep all maximum value labels found in each map, e.g. if two
classifications have the same likelihood for a node."""
for object in self.nlabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.nlabels[object].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.nlabels[ object ] = maxPairs
for edge in self.elabels.keys():
max = -1.0
maxPairs = {}
for (label, value) in self.elabels[edge].items():
if value > max:
max = value
maxPairs = { label : value }
elif value == max:
maxPairs[label] = value
self.elabels[ edge ] = maxPairs
# RETURNS NONE: modifies in-place.
def invertValues(self):
"""Substract all node and edge label values from 1.0, to
invert the values. Attempting to invert a value outside [0,1] will
set the error flag on the object."""
for node in self.nlabels.keys():
for label in self.nlabels[ node ]:
currentValue = self.nlabels[ node ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert node: ' \
+ node + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.nlabels[ node ][ label ] = 1.0 - currentValue
for edge in self.elabels.keys():
for label in self.elabels[ edge ]:
currentValue = self.elabels[ edge ][ label ]
if currentValue < 0.0 or currentValue > 1.0:
sys.stderr.write('\n !! Attempted to invert edge: ' + \
str(edge) + ' label \"' \
+ label + '\" with value ' + str(currentValue) + '\n')
self.error = True
else:
self.elabels[ edge ][ label ] = 1.0 - currentValue
def subStructIterator(self, nodeNumbers):
""" Return an iterator which gives all substructures with n nodes
n belonging to the list depths"""
if(isinstance(nodeNumbers, int)):
nodeNumbers = [nodeNumbers]
subStruct = []
# Init the substruct with isolated nodes
for n in self.nlabels.keys():
subStruct.append(set([n]))
if 1 in nodeNumbers:
yield smallGraph.SmallGraph([(n, "".join(self.nlabels[n].keys()))], [])
for d in range(2,max(nodeNumbers)+1):
#add one node to each substructure
newSubsS = set([])
newSubsL = []
for sub in subStruct:
le = getEdgesToNeighbours(sub,self.elabels.keys())
for (f,to) in le:
new = sub.union([to])
lnew = list(new)
lnew.sort()
snew = ",".join(lnew)
if(not snew in newSubsS):
newSubsS.add(snew)
newSubsL.append(new)
if d in nodeNumbers:
yield self.getSubSmallGraph(new)
# ??? BUG ???
subStruct = newSubsL
def getSubSmallGraph(self, nodelist):
"""Return the small graph with the primitives in nodelist and all edges
between them. The used label is the merged list of labels from nodes/edges"""
sg = smallGraph.SmallGraph()
for n in nodelist:
sg.nodes[n] = self.nlabels[n].keys()
for e in getEdgesBetweenThem(nodelist,self.elabels.keys()):
sg.edges[e] = self.elabels[e].keys()
# Compare the substructure
def compareSubStruct(self, olg, depths):
"""Return the list of couple of substructure which disagree
the substructure from self are used as references"""
for struc in olg.subStructIterator(depths):
sg1 = self.getSubSmallGraph(struc.nodes.keys())
if(not (struc == sg1)):
allerrors.append((struc,sg1))
return allerrors
def compareSegmentsStruct(self, lgGT,depths):
"""Compute the number of differing segments, and record disagreements
in a list.
The primitives in each subgraph should be of the same number and names
(identifiers). Nodes are merged that have identical (label,value) pairs
on nodes and all identical incoming and outgoing edges. If used for
classification evaluation, the ground-truth should be lgGT. The first
key value of the matrix is the lgGT obj structure, which gives the
structure of the corresponding primitives which is the key to get the
error structure in self."""
(sp1, ps1, _, sre1) = self.segmentGraph()
(spGT, psGT, _, sreGT) = lgGT.segmentGraph()
#FIX : check that primitives identical. This this not the case in spare representation
segDiffs = set()
correctSegments = set()
# Make sure to skip primitives that were missing ('ABSENT'),
# as in that case the graphs disagree on all non-identical node
# pairs for this primitive, and captured in self.absentEdges.
# RZ: Assuming one level of structure here; modifying for
# new data structures accomodating multiple structural levels.
obj1Id = ps1[primitive][ ps1[primitive].keys()[0] ]
obj2Id = psGT[primitive][ psGT[primitive].keys()[0] ]
if not 'ABSENT' in self.nlabels[primitive] and \
not 'ABSENT' in lgGT.nlabels[primitive]:
# Obtain sets of primitives sharing a segment for the current
# primitive for both graphs.
# Each of sp1/spGT are a map of ( {prim_set}, label ) pairs.
segPrimSet1 = sp1[ obj1Id ][0]
segPrimSet2 = spGT[ obj2Id ][0]
# Only create an entry where there are disagreements.
if segPrimSet1 != segPrimSet2:
segDiffs.add( ( obj2Id, obj1Id) )
correctSegments.add( obj2Id )
# DEBUG: don't record differences for a single node.
elif len(self.nlabels.keys()) > 1:
# If node was missing in this graph or the other, treat
# this graph as having a missing segment
# do not count the segment in graph with 1 primitive
segDiffs.add(( obj2Id, obj1Id ) )
# now check if the labels are identical
for seg in correctSegments:
# Get label for the first primtives (all primitives have identical
# labels in a segment).
# DEBUG: use only the set of labels, not confidence values.
(cost, diff) = self.cmpNodes(self.nlabels[ firstPrim ].keys(),lgGT.nlabels[ firstPrim ].keys())
segId1 = ps1[firstPrim][ ps1[ firstPrim ].keys()[0] ]
segId2 = psGT[firstPrim][ psGT[ firstPrim ].keys()[0] ]
if (0,[]) != (cost, diff):
segDiffs.add(( segId2, segId1) )
allSegWithErr = set([p for (p,_) in segDiffs])
# start to build the LG at the object level
# add nodes for object with the labels from the first prim
for (sid,lprim) in spGT.iteritems():
lgObj.nlabels[sid] = lgGT.nlabels[list(lprim[0])[0]]
# Compute the specific 'segment-level' graph edges that disagree, at the
# level of primitive-pairs. This means that invalid segmentations may
# still have valid layouts in some cases.
# Add also the edges in the smallGraph
segEdgeErr = set()
for thisPair in sreGT.keys():
# TODO : check if it is sp1[thisPair[0]] instead of sp1[thisPair[0]][0]
thisParentIds = set(spGT[ thisPair[0] ][0])
thisChildIds = set(spGT[thisPair[1] ][0])
lgObj.elabels[thisPair] = lgGT.elabels[ (list(thisParentIds)[0], list(thisChildIds)[0])]
# A 'correct' edge has the same label between all primitives
# in the two segments.
# NOTE: we are not checking the consitency of label in each graph
# ie if all labels from thisParentIds to thisChildIds in self are
# the same
for parentId in thisParentIds:
for childId in thisChildIds:
# DEBUG: compare only label sets, not values.
if not (parentId, childId) in self.elabels.keys() or \
(0,[]) != self.cmpEdges(self.elabels[ (parentId, childId) ].keys(), lgGT.elabels[ (parentId, childId) ].keys()):
segEdgeErr.add(thisPair)
continue
listOfAllError = []
for smg in lgObj.subStructIterator(depths):
#if one segment is in the segment error set
showIt = False
if len(set(smg.nodes.keys()).intersection(allSegWithErr)) > 0:
showIt = True
for pair in smg.edges.keys():
if pair in segEdgeErr:
showIt = True
continue
if showIt:
#build the smg for the prim from lgGT
allPrim = []
for s in smg.nodes.keys():
smgPrim1 = self.getSubSmallGraph(allPrim)
smgPrimGT = lgGT.getSubSmallGraph(allPrim)
listOfAllError.append((smg,smgPrimGT,smgPrim1))
return listOfAllError
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
################################################################
# Utility functions
################################################################
def mergeLabelLists(llist1, weight1, llist2, weight2, combfn):
"""Combine values in two label lists according to the passed combfn
function, and passed weights for each label list."""
# Combine values for each label in lg2 already in self.
allLabels = set(llist1.items())\
.union(set(llist2.items()))
# have to test whether labels exist
# in one or both list.
for (label, value) in allLabels:
if label in llist1.keys() and \
label in llist2.keys():
llist1[ label ] = \
combfn( llist1[label], weight1,\
llist2[label], weight2 )
elif label in llist2.keys():
llist1[ label ] = \
weight2 * llist2[label]
else:
llist1[ label ] = \
weight1 * llist1[label]
def mergeMaps(map1, weight1, map2, weight2, combfn):
"""Combine values in two maps according to the passed combfn
function, and passed weights for each map."""
# Odds are good that there are built-in function for this
# operation.
objects1 = map1.keys()
objects2 = map2.keys()
allObjects = set(objects1).union(set(objects2))
for object in allObjects:
if object in objects1 and object in objects2:
# Combine values for each label in lg2 already in self.
mergeLabelLists(map1[object],weight1, map2[object], weight2, combfn )
# DEBUG: no relationship ('missing') edges should
# be taken as certain (value 1.0 * weight) where not explicit.
elif object in objects2:
# Use copy to avoid aliasing problems.
# Use appropriate weight to update value.
map1[ object ] = copy.deepcopy( map2[ object ] )
for (label, value) in map1[object].items():
map1[object][label] = weight2 * value
map1[object]['_'] = weight1
else:
# Only in current map: weight value appropriately.
for (label, value) in map1[object].items():
map1[object][label] = weight1 * value
map1[object]['_'] = weight2
def getEdgesToNeighbours(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
neigb = set([])
for (n1,n2) in edges:
if (n1 in nodes and not n2 in nodes):
neigb.add((n1,n2))
return neigb
def getEdgesBetweenThem(nodes,edges):
"""return all edges which are coming from one of the nodes to out of these nodes"""
edg = set([])
for (n1,n2) in edges:
if (n1 in nodes and n2 in nodes):
edg.add((n1,n2))
return edg